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The influence of temperature dynamics and dynamic finite ion Larmor radius effects
on seeded high amplitude plasma blobs

M. Held,∗ M. Wiesenberger, and A. Kendl
Institute for Ion Physics and Applied Physics, Universität Innsbruck, A-6020 Innsbruck, Austria

J. Madsen
Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Thermal effects on the perpendicular convection of seeded pressure blobs in the scrape-off layer
of magnetised fusion plasmas are investigated. Our numerical study is based on a four field full-F
gyrofluid model, which entails the consistent description of high fluctuation amplitudes and dynamic
finite Larmor radius effects. We find that the maximal radial blob velocity increases with the
square root of the initial pressure perturbation and that a finite Larmor radius contributes to highly
compact blob structures that propagate in the poloidal direction. An extensive parameter study
reveals that a smooth transition to this compact blob regime occurs when the finite Larmor radius
effect strength, defined by the ratio of the magnetic field aligned component of the ion diamagnetic
to the E×B vorticity, exceeds unity. The maximal radial blob velocities agree excellently with the
inertial velocity scaling law over more than an order of magnitude. We show that the finite Larmor
radius effect strength affects the poloidal and total particle transport and present an empirical
scaling law for the poloidal and total blob velocities. Distinctions to the blob behaviour in the
isothermal limit with constant finite Larmor radius.

I. INTRODUCTION

In magnetised fusion plasmas the exhaust of particles
and heat critically determines the lifetime of the plasma
facing components. Intermittent outbreaks of spatially
localised structures [1, 2] may damage the divertor plates
and the surrounding wall [3–5]. These structures, often
referred to as blobs or filaments, are born in the edge in
the vicinity of the last closed flux surface (LCFS) and are
expelled into the scrape-off layer (SOL).
The strong magnetic field separates the spatial scales of
filaments to the extent that they are strongly elongated
along the magnetic field but spatially localised perpendic-
ular to it. Typically their cross-field size σ is on the order
of cm, the perpendicular ion Mach number is subsonic
and the relative fluctuation levels of particle density and
temperature in the SOL are of order unity [6–8]. In the
SOL parallel heat conduction cools electrons much faster
than ions and leads to ion to electron background temper-
ature ratios in the range of τi ≡ ti0/te0 ∼ 1− 4 [9, 10].
The radial transport caused by blobs depends on their
production rate and the blob regime. A blob regime is
a parameter space, in which a particular physical mech-
anism dominates the dynamics of the blob. The various
blob regimes strongly depend on the blobs’ cross-field
size and collisionality [11, 12]. In all regimes it is the
magnetic field inhomogeneity that generates perpendic-
ular E × B energy. The mechanism for radial motion
is based on the curvature and ∇B drifts, which induce
an electrical field in the poloidal direction. The resulting
E ×B drift moves the blob radially outward. One par-
ticular regime is the so called inertial or resistive balloon-
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ing regime, predominantly emerging when the filament is
disconnected from the divertor plates due to high SOL
collisionality [13, 14], high magnetic shear in the vicin-
ity of the X-point or electromagnetic effects [15]. In the
inertial regime the basic blob dynamics are captured by
two dimensional models that invoke the cold ion temper-
ature and thin-layer (Boussinesq) approximation [16–18].
The numerically observed structure of a seeded pressure
blob with Gaussian shape is plume like, which is in ac-
cordance with cold ion plasma experiments [19]. The
relaxation of the thin-layer approximation allowed the
treatment of realistic fluctuation levels and supported
the results of former studies [20–23]. However, in hot
ion plasmas spatially compact blobs are observed exper-
imentally [8, 24–26]. This blob structure can be ascribed
to the finite Larmor radius (FLR) of the ions, which was
demonstrated numerically by isothermal gyrofluid mod-
els for small [27] and high fluctuation amplitudes [28].
For the sheath connected regime this was confirmed by
reduced drift-fluid models [29–31].
Blobs are localised pressure perturbations, which in gen-
eral involve particle density and temperature variations.
Due to the relatively high ion to electron background
temperature ratios τi, ion temperature perturbations are
in particular expected to have a profound influence on
blob dynamics. Consequently we extend the former
isothermal gyrofluid work [27, 28] to include ion and elec-
tron temperature dynamics and dynamic FLR effects,
which account for variations in magnetic field and tem-
perature. We highlight differences in blob propagation,
particle transport and scaling to the isothermal model.
Our model does not adopt the thin-layer approximation
and is energetically consistent. Parallel dynamics and
sheath effects have been studied by means of three dimen-
sional numerical simulations [32–37] but are neglected
here. Thus, our work is relevant for blobs in the inertial
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regime.
Our numerical investigation reports that finite temper-
ature variations increase the maximal radial and total
centre of mass blob velocity. Finite ion temperature re-
sults in a compact blob structure with significant poloidal
velocity. In an extensive parameter study we find that
the maximal radial centre of mass velocities max(Vc,x)
are in excellent agreement with the inertial velocity scal-

ing law V⊥ ≡
√

σ(∆pe+∆pi)
2Rne0mi

. Here, ∆pe and ∆pi are the

electron and ion pressure amplitudes, R is the radial dis-
tance to the outboard mid-plane, ne0 is the background
electron density and mi is the ion mass. We quantify
the FLR effect strength by the ratio of the magnetic
field aligned component of the ion diamagnetic vorticity
Ωd0 ≡ b̂ ·∇ × ud to the magnetic field aligned compo-
nent of the E×B vorticity ΩE0 ≡ b̂ ·∇×uE ∼ V⊥/σ to
show that a smooth transition to a compact blob regime
occurs for a ratio of unity. With the help of the FLR

strength parameter Θ ≡
√

∆p2
i

(∆pe+∆pi)te0ne0

2Rρ2
s0

σ3 an em-

pirical poloidal and total velocity scaling law is deduced
and verified. Here, ρs0 =

√
mite0/(eB0) is the drift scale

with reference magnetic field magnitude B0 and ion par-
ticle charge e.
The remainder of the manuscript is organised as follows.
We start with the derivation of the gyrofluid model equa-
tions in II. In this section we derive also an energy theo-
rem and the vorticity density equation with its associated
scaling laws. The described thermal gyrofluid model is
solved numerically with seeded blobs as initial condition.
The numerical results of our parameter study are pre-
sented in III. Here, we lay the focus of the discussion on
thermal effects on propagation, compactness and parti-
cle transport of the blob. The results are discussed and
summarised in IV.

II. GYROFLUID MODEL

Our approach relies on a full-F gyrofluid model [38]
for subsonic E ×B flows, which emerges by taking the
gyrofluid moments over the gyrokinetic Vlasov-Maxwell
equations [39]. This reduces the dimensionality and con-
sequently the computational cost drastically. No distinc-
tion is made between the dynamical background and the
low-frequency fluctuations. The ratio of gradient length-
scale to the ion gyro-radius ρi may approach unity but
polarisation effects are taken in the long wavelength limit
(LWL) k4

⊥ρ
4
i � 1. Finite Larmor radius (FLR) effects

arise naturally in gyrofluid models resulting in a rather
simple set of equations. FLR-corrected drift-fluid models
are recovered when the gyrofluid model is taken in the
LWL [40].
In the following we derive a four field full-F gyrofluid
model for an electrostatic magnetised plasma. The model
is derived for a 2D slab geometry, where the magnetic
field is varying in the radial direction and is perpendicular
to the 2D slab. Collisional terms and parallel dynamics

are discarded whereas we keep all nonlinearities in order
to obey the energy theorem and to get a proper descrip-
tion of the dynamics even for high fluctuation amplitudes.
This results in equations for a gyro-centre density N and
perpendicular gyro-centre temperature T , which are cou-
pled via the nonlinear polarisation equation. Due to the
neglect of parallel dynamics our gyrofluid model applies
to the inertial regime.

A. Polarisation equation

The polarisation equation is the gyrofluid expression
of quasi neutrality and reads

ne − Γ†1,iNi = ∇ ·
(
Ni

ΩiB
∇⊥φ

)
, (1)

where ne is the electron density, Ni is the ion gyro-centre
density, φ is the electrostatic potential and Ωi = eB/mi

is the ion gyro-frequency. We note here that as a con-
sequence of the gyro-centre transformation [39] the ion
gyro-centre density Ni is not to be confused with the ion
particle density ni 6= Ni. The perpendicular gradient is
defined by ∇⊥ ≡ −b̂×(b̂×∇) and the unit vector in the

magnetic field direction by b̂ ≡ B/B. The mass ratio be-
tween the electrons and ions is small, permitting us to ne-
glect electron FLR and finite electron inertia effects. This
casts the electron gyro-centre variables into common fluid
variables (Ne, Te) ≡ (ne, te). The sum of the electron
density ne and the FLR corrected ion gyro-centre den-
sity Ni is referred to as the nonlinear polarisation charge
density (right hand side of (1)). In the polarisation (1) no

thin-layer approximation ∇·
(
Ni

ΩiB
∇⊥φ

)
≈ Ni0

Ωi0B0
∇2
⊥φ is

applied and the full nonlinear polarisation charge density
is retained. Here, and in all other abbreviations the sub-
script ’0’ denotes a constant background quantity. We
note that FLR corrections to the polarisation density are
included in delta-f gyrokinetic and gyrofluid models [27],
but are omitted in full-F gyrokinetic as well as full-F
gyrofluid models. Therefore, even if we invoked the thin-
layer approximation to the full-F model, it would only
agree with delta-f gyrofluid models in the LWL [28]. In
gyrofluid models the ion polarisation drift enters via the
nonlinear polarisation charge density. The gyroaveraging
operators appear as the Padé approximants [41]

Γ1,i =
1

1− ρ2
i

2 ∇2
⊥

, (2)

Γ†1,i =
1

1−∇2
⊥
ρ2
i

2

. (3)

Note here the temperature and magnetic field depen-
dence of the ion gyro-radius ρi =

√
Ti/mi/Ωi, which

introduces dynamic FLR effects ρi(Ti, B). In contrast to
isothermal gyrofluid models with constant FLR effects
ρi(Ti0, B0) [28] the Γ1,i operator is no longer self-adjoint
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Γ1,i 6= Γ†1,i and the Γ2,i ≡ ρi
2
∂Γ1,i

∂ρi
operator appears in

the gyrofluid moment equations due to spatial variations
in the temperature or magnetic field

Γ2,i =
ρ2
i

2 ∇2
⊥(

1− ρ2
i

2 ∇2
⊥

)2 , (4)

Γ†2,i =
∇2
⊥
ρ2
i

2(
1−∇2

⊥
ρ2
i

2

)2 . (5)

The FLR corrected ion gyro-centre density Γ†1Ni in the
polarisation (1) is the averaged charge contribution at a
position r from gyro-centres whose gyro-orbits intersect
r. In case of constant FLR effects the mean gyro-orbit
is constant and these gyro-centres are placed on a circle
with constant radius ρi(Ti0, B0) at position r. On the
contrary, for dynamic FLR effects the mean gyro-orbit
is spatially varying, so that these gyro-centres are placed
on an arbitrary curve. For the simple case of a Gaussian
ion gyro-centre pressure blob this curve reduces to a cir-
cle with radius ρi(Ti, B) or a deformed circle at position
r, which is shown in 1. As a consequence the curves sam-
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FIG. 1: The set of gyro-centres is shown with
|x− r|2 = ρi(x)2 for four different positions r in case of
a Gaussian ion gyro-centre pressure blob. The contours
illustrate the normalised ion gyro-centre density Ni/ne0

or ion gyro-centre temperature Ti/ti0 for an ion to
electron background temperature ratio τi = 4,

cross-field size σ = 5 and amplitude A = 2 (cf. II E).
The curve for a constant gyro-radius (dot-dashed

contours) is always a circle with radius ρi(Ti0, B0). On
the contrary the curve for a dynamic gyro-radius (solid

contours) is either a circle with radius
ρi(Ti, B) ≥ ρi(Ti0, B0) or a deformed circle.

ple different ion gyro-centre densities for constant or dy-
namic FLR effects. This, in comparison to constant FLR
effects, effectively increases or decreases the polarisation
charge density in the blob centre or edge respectively.
Due to the neglect of electron FLR effects the gyroaver-

aging operators for electrons reduce to Γ1,e = Γ†1,e = 1

and Γ2,e = Γ†2,e = 0.

B. Gyrofluid moment equations

The time evolution of a gyro-centre density N is gov-
erned by the zeroth gyrofluid moment over the gyroki-
netic Vlasov equation

∂

∂t
N + ∇ · (N [UE +Uη +U∇B ]) = ΛN . (6)

Here, the gyrofluid drifts (denoted with capital U) ac-
count for the E ×B drive by the E ×B drift UE , the
interchange drive by the ∇B drift U∇B and FLR cor-
rections to the gyro-averaged electric potential due to
variations in the temperature or magnetic field by Uη:

UE ≡
b̂×∇ψ

B
, (7)

U∇B ≡
T b̂×∇ lnB

qB
, (8)

Uη ≡
(Γ2φ) b̂×∇η

B
. (9)

Note that as a consequence of the choice of our slab ge-
ometry, which is introduced later in this section, no cur-
vature drift appears in the gyrofluid moment equations.
In (7) and (9) we introduced the gradient of temperature
and magnetic field ∇η, the generalised potential ψ and
the E ×B drift velocity uE :

∇η = ∇ lnB −∇ lnT, (10)

ψ = Γ1φ−
mu2

E

2q
, (11)

uE =
1

B
b̂×∇φ. (12)

Here, q is the particle charge. Since the gyrokinetic La-
grangian is taken in the LWL, polarisation effects are
retained in the generalised potential ψ of (11) only via
the E × B energy term [38]. The dissipative term in
the gyrofluid moment (6) is a hyperdiffusive term of sec-
ond order ΛN ≡ −ν∇4

⊥N . The second gyrofluid moment
yields the partial differential equation for a perpendic-
ular gyro-centre pressure P . The equation is rewritten
with the help of the zeroth gyrofluid moment (6) into an
evolution equation for a perpendicular gyro-centre tem-
perature T :

∂

∂t
T + T∇ · (UE,2 +U∇B +Uη)

+ T (UE,2 +U∇B +Uη) ·∇ lnN

− T (UE +UE,2 + 2U∇B) ·∇η = ΛT .

(13)

Here, the gyrofluid drift UE,2 captures FLR corrections
to the E×B drift UE , which emerge due to spatial vari-
ations in the gyro-centre temperature T or the magnetic
field B:

UE,2 ≡
b̂×∇Γ2φ

B
. (14)
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In the second gyrofluid moment (13) a hyperdiffusive
term of second order ΛT ≡ −ν∇4

⊥T is added, which to-
gether with ΛN ensures numerical stability.
Our gyrofluid model employs right-handed Cartesian co-
ordinates (x, y, z) and a slab magnetic field b̂ = êz with
a radially varying magnitude 1

B = 1
B0

(1 + x/R). Here,
R is the radial distance to the outboard mid-plane and
B0 is the reference magnetic field magnitude. In this
simple geometry a more accessible representation of the
electron and ion gyrofluid moment (6) and (13) is ob-
tained by expressing the set of equations with the help
of Poisson brackets and curvature operators. The slab
geometry approximation reduces the curvature operator

to K(f) ≡ ∇ ·
(

1
B b̂×∇f

)
= − 1

B0R
∂f
∂y and the Poisson

bracket to [f, g]xy = ∂f
∂x

∂g
∂y −

∂g
∂x

∂f
∂y . We rearrange the

terms in the gyrofluid moment (6) and (13) to highlight
the highly nonlinear nature of our system:

∂

∂t
ne =− 1

B
[φ, ne]xy − neK (φ) +

1

e
K (tene)

+ Λne
, (15)

∂

∂t
Ni =− 1

B
[ψi, Ni]xy +

1

B
[lnTi, Niχi]xy

−NiK (ψi + χi) +NiχiK (lnTi − lnNi)

− 1

e
K (TiNi) + ΛNi

, (16)

∂

∂t
te =− 1

B
[φ, te]xy − teK(φ) +

3te
e
K(te)

+

(
t2e
e

)
K (lnne) + Λte , (17)

∂

∂t
Ti =− 1

B
[ψi + 2χi, Ti]xy

− Tiχi
B

[lnχi − lnTi, lnNi]xy

− TiK(ψi + 3χi)−
(

3Ti
e
− χi

)
K(Ti)

−
(
T 2
i

e
+ Tiχi

)
K (lnNi) + ΛTi

. (18)

Here, we introduced χi ≡ Γ2,iφ. In the isothermal limit
the temperatures are constant (te, Ti) = (te0, Ti0) and

second order FLR effects vanish so that Γ1,i = Γ†1,i and

Γ2,i = Γ†2,i = 0. From this we obtain the set of full-F

gyrofluid equations, which was studied in [28].

C. Energy theorem

The energy E of our system can be determined by inte-
grating the sum of the zeroth gyrofluid moment equation
multiplied by the factor (T + qψ) and the second gy-
rofluid moment equation over the domain. We obtain
the energy theorem ∂

∂tE = Λ for electrons and ions by

neglecting boundary terms:

E =

∫
dx

(
nete +NiTi +

miNiu
2
E

2

)
, (19)

Λ =

∫
dx

[
(te − eφ) Λne + (Ti + eψi) ΛNi

+ neΛte +

(
1 +

e

Ti
χi

)
NiΛTi

]
. (20)

The energy consists of the internal (thermal) energy den-
sities for electrons and ions and the E ×B energy den-
sity. The dissipative terms ΛN ,ΛT enter the energy the-
orem via Λ. The derived energy theorem resembles those
in [38, 42].

D. Vorticity density equation

In order to understand the relation between gyro-
centre and particle fields and to show the correspondence
to drift-fluid models explicitly we derive the inherent vor-
ticity density equation of the presented full-F gyrofluid
model in the LWL [40]. Thus we first invert the polarisa-
tion (1) and apply the LWL. This yields an expression for
Ni, which depends on the physical meaningful variables
ne, ti and φ [42]:

Ni ≈ ne −∇2
⊥

(
neti

2miΩ2
i

)
−∇ ·

(
ne
BΩi

∇⊥φ
)

≡ ne
(

1− ω∗

Ωi

)
. (21)

Here, we defined the sum of the E×B vorticity plus half
of the ion diamagnetic vorticity as

ω∗ =
Ωi
ne

[
∇ ·

(
ne
BΩi

∇⊥φ
)

+ ∇2
⊥

(
neti

2miΩ2
i

)]
≡ ΩE +

1

2
Ωd. (22)

The generalised vorticity Ω∗ = ω∗ + 1
2Ωd is the sum

of the magnetic field aligned component of the E × B
vorticity and the ion diamagnetic vorticity. We note
here that the E × B vorticity consists of the magnetic
field aligned component of the common E ×B vorticity
ΩE0 ≡ b̂ · ∇ × uE = ∇ ·

(
1
B∇⊥φ

)
plus a cross term

ΩEX ≡ 1
B∇ ln

(
ne

Ωi

)
·∇⊥φ. Analogously the magnetic

field aligned component of the ion diamagnetic vorticity

consists of Ωd0 ≡ b̂ ·∇× ud = ∇ ·
(

1
Ωimine

∇⊥pi⊥
)

and

a cross term ΩdX ≡ ti⊥
miΩi

[
4(∇⊥ ln Ωi)

2 − 2∇2
⊥ ln Ωi −

∇⊥ ln pi⊥ · (3∇⊥ ln Ωi + ∇⊥ lnne)
]
. The generalised

vorticity density is given by W ≡ neΩ
∗. The LWL vor-

ticity density equation is derived by taking the material
derivative df

dt ≡
∂f
∂t + 1

B [φ, f ]xy over the generalised vor-
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ticity density

1

Ωi

d

dt
W ≈1

e
K (pe + pi)−

1

B

[
∇⊥φ,∇⊥

(
ρ2
ine
)]
xy

+
1

Ωi
ΛW , (23)

where we have neglected FLR corrections in curvature
operators and nonlinear terms that fall into the LWL.
Dynamic FLR effects arise from the ion diamagnetic con-
tribution of the generalised vorticity density W and the
second term on the right hand side of the vorticity den-
sity (23). The dissipation of the generalised vorticity
density is represented by ΛW , which is discussed in detail
in A. We note here that the Prandtl number Pr ≡ νΩ∗

νT
and Schmidt number Sc ≡ νΩ∗

νN
are fixed to unity. Hence,

the mass diffusivity νN , the thermal diffusivity νT and
the kinematic viscosity νΩ∗ reduce to a single dissipative
parameter ν. In the absence of dissipative terms we can
rewrite the vorticity density (23) to a form, which equals
the divergence of the ion polarisation flux. It reads

∇ ·
(
ne
BΩi

d

dt
∇⊥φ∗

)
≈ 1

e
K (pe + pi) , (24)

and allows a comparison to FLR-corrected drift-fluid
models [43, 44]. Here, we defined ∇⊥φ∗ ≡ ∇⊥φ +
ti
e∇⊥ ln

(
pi

miΩ2
i

)
.

E. Initialisation

Since gyro-centre fields Ni, Ti match the particle fields
ni, ti only to zeroth order in k2

⊥ρ
2
i and eφ/ti, an accurate

initialisation procedure is required in order to avoid any
residual E × B vorticity. Hence, our initialisation rou-
tine relies on transformations from the gyro-centre fields
Ni, Ti, Pi = NiTi to the particle fields ne = ni, ti, te,
pi = niti without the generation of artificial initial E×B
vorticity. For the ion gyro-centre density and perpendic-
ular temperature we mimic an initial blob by a Gaussian
of the form

Ni (x, 0) = ne0

[
1 +A exp

(
− (x− x0)

2

2σ2

)]
, (25)

Ti (x, 0) = ti0

[
1 +A exp

(
− (x− x0)

2

2σ2

)]
, (26)

with initial amplitude A of the gyro-centre fields Ni and
Ti. In order to initialise with zero E × B vorticity we
take the polarisation (1) and the equation for pi [42] in
the limit φ = 0. This yields the following initial particle
fields

ne = Γ†1,iNi, (27)

pi =
(

Γ†1,i + Γ†2,i

)
Pi. (28)

The initial electron pressure is related to ion pressure
via pi = τipe so that the initial electron tempera-
ture is given by te = ti/τi. We note here that the
initial amplitudes and cross-field sizes of the particle
fields ne, te and ti may differ from the initial param-
eters A and σ of the gyro-centre fields Ni and Ti due
to the manifestation of FLR effects. Hence, the true
initial amplitudes ∆ne ≡ max {ne (x, 0)− ne0|x ∈ V },
∆te ≡ max {te (x, 0)− te0|x ∈ V } and ∆ti ≡
max {τi (te (x, 0)− te0) |x ∈ V } are taken into account
for the derivation of quantities like the global interchange
rate γg, which is defined in the next II F. For the size of
the blob we take the initial parameter σ of the gyro-centre
fields.

F. Interchange dynamics

Now, we use the derived vorticity density (23) to ob-
tain an estimate for the maximal perpendicular blob ve-
locity V⊥. For this sake we first employ the thin-layer
approximation on (23) and neglect all terms, which are
related to FLR effects or dissipation. Our scaling anal-
ysis relies on the ideal interchange rate γ and the blob
cross-field size σ as typical time and spatial scale, which
results in the typical velocity scale V⊥ = γσ. The charac-
teristic scale of the generalised vorticity and perpendicu-
lar pressure is the ideal interchange rate γ and the total
scalar pressure perturbation ∆pe + ∆pi. Following [12]
we obtain the explicit expression for the ideal interchange

rate γ =
√

∆pe+∆pi
2Rne0σmi

. We note that an initial electron

and ion temperature perturbation (∆te,∆ti) enters the
initial electron and ion pressure perturbation according
to (∆pe,∆pi) ∼ (ne0∆te + te0∆ne + ∆ne∆te, ne0∆ti +
ti0∆ne + ∆ne∆ti), which in the isothermal limit reduces
to (∆pe,∆pi) ∼ (te0∆ne, ti0∆ne).

Now, we postulate the factor
√

1 + ∆ne/ne0 ‘ex post’
as a nonlinear correction factor to the blob size σ and
the ideal interchange rate γ. As a result the typical
spatial and time scale is the effective blob size σg ≡
σ
√

1 + ∆ne/ne0 and the global interchange rate [28]

γg =

√
∆pe + ∆pi

2R(ne0 + ∆ne)σmi
. (29)

This form of scaling fits our simulation results best. With
the help of the global interchange rate γg = V⊥/σg we
obtain the scaling law for the maximal perpendicular blob
velocity

V⊥ =

√
σ(∆pe + ∆pi)

2Rne0mi
. (30)

The derived velocity scaling estimate of (30) differs for
high electron density amplitudes ∆ne from the so called
global scaling V⊥,g ≡ V⊥/

√
1 + ∆ne/ne0 as reported
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in [28, 45]. However, in [22, 23] the amplitude scal-
ing of (30) was verified numerically for high fluctuation
amplitudes in the cold ion temperature and isothermal
limit. In the isothermal limit our derived velocity scal-
ing law agrees up to a factor

√
2 with the inertial ve-

locity scaling law of [12]. This is reasoned in the low
beta β ≡ 2pµ0/B

2 � 1 approximation of the curva-
ture operator. In this case the magnetic curvature is
κ ≡ b̂ ·∇b̂ ≈∇⊥ lnB, whereas for a slab magnetic field
the magnetic curvature is κ = 0. Note that (30) also
coincides with [17] up to a factor 2.
Now, we define a parameter, which is a measure of the
FLR strength in the inertial regime. In order to do so we
take the ratio of the magnetic field aligned component of
the ion diamagnetic vorticity Ωd0 to the estimate for the
magnetic field aligned component of the E×B vorticity
ΩE0 ∼ V⊥/σ in the inertial regime. This defines the FLR
strength parameter as Θ ≡ Ωd0

ΩE0
or

Θ ≈

√
∆p2

i

(∆pe + ∆pi) te0ne0

2Rρ2
s0

σ3
. (31)

We note here that in the FLR strength parameter Θ the
ion diamagnetic vorticity Ωd0 stems from the LWL over

the gyroaveraging operator Γ†1,i.

III. NUMERICAL EXPERIMENTS

The gyrofluid model, which consists of Equations
(1), (15), (16), (17) and (18), is numerically solved by
the FELTOR library [46]. This library relies on discon-
tinuous Galerkin (dG) methods to discretise perpendicu-
lar [47] and parallel spatial derivatives [48]. DG methods
are very versatile in the choice of the desired order of
accuracy and retain a high degree of parallelism in the
resulting algorithm. FELTOR exploits this on shared as
well as distributed memory systems and efficiently exe-
cutes on CPUs and GPUs. This is required by the high
computational cost of the underlying model.
We resolve our box of size lx = ly = 40σ by P = 3
polynomial coefficients and Nx = Ny = 320 grid cells
to ensure converged simulations. Boundary conditions of
the fields are periodic in y and Dirichlet in x direction.
We verified our code with the help of the energy theorem
of (19) and by performing convergence tests in the L2-
norm for all implemented numerical operators.
Our dimensionless set of equations employs the Bohm
normalisation with drift scale ρs0 =

√
mite0/(eB0), ref-

erence ion gyrofrequency Ωi0 = eB0/mi and cold ion
acoustic speed cs0 = ρs0Ωi0 so that our variables are
transformed to x ← x/ρs0, t ← tΩi0, B ← B/B0,
te ← te/te0, Ti ← Ti/ti0, ne ← ne/ne0, Ni ← Ni/ne0
and φ← φe/te0.
The physical parameters match those of an exemplary
SOL on the low field side of the ASDEX Upgrade (AUG)
tokamak. Here, the electron temperature is te0 = 20eV

and the magnetic field magnitude is B0 = 2T , which de-
termines the drift scale to ρs0 = 0.32mm for a deuterium
plasma. The remaining parameters are R0 = 1.65m =
5156ρs0, a = 0.5m = 1562ρs0, R = R0 + a = 2.15m =
6719ρs0 and enter the dimensionless equations via the
curvature parameter κ = ρs0/R ≈ 0.00015. The param-
eter range of the ion background temperature is ti0 =
{0, 0.1, 0.5, 1, 2, 4}te0 and the initial amplitude and width
of the blob is A = {0.1, 0.5, 1, 2} and σ = {5, 10, 20}ρs0.
The ratio between the effective gravity to the dissipative
forces is known as the Rayleigh number Ra. For unity

Prandtl number we get Ra = σ3

miRν2

∆ne(te0+ti0)
ne0

in the

isothermal case and Ra = σ3

miRν2

(∆pe+∆pi)
ne0

if we include

temperature dynamics (dT/dt 6= 0). We fix the Rayleigh
number to Ra = 105 in all our simulations. This deter-
mines the viscosity to be in the turbulent high Reynolds
number regime, where no impact on the maximal veloc-
ity of the blob is expected [17, 49].
In the following we start with the description of the non-
linear evolution of thermal blobs in III A. A detailed com-
parison of the propagation of isothermal and thermal
blobs is given in III B. The impact of the temperature
dynamics on the persistence of the initial blob structure
is given afterwards in III C. In the end we focus on ther-
mal effects on the particle transport of blobs (III D).

A. Nonlinear evolution of thermal blobs

In the cold ion limit a finite electron pressure gradient
induces an E ×B-vorticity dipole due to the ∇B drift.
This accelerates the blob into the radial direction [18].
A steep and vertically extended pressure front develops
finally into an up-down symmetric mushroom shape.
This symmetry is broken in the late purely nonlinear
phase due to the up-down asymmetric nature of the
gyrofluid model. We depict this behaviour for electron
density ne, electron temperature te and the E × B
vorticity ΩE0 ≈ 1

B0
∇2
⊥φ of an exemplary cold blob in 2.

Finite ion temperature effects change the behaviour
of the blob fundamentally [27, 28]. We can see this by
comparing the blob structures and positions of 2 and 3.
FLR corrections arise, which contribute to the polarisa-
tion charge density in (1) and advect electrons and ions
with different E×B drifts uE and UE (cf. (12) and (7)).
Moreover FLR effects manifest themselves by additional
drifts (cf. (14) and (9)) in the gyrofluid moment equa-
tions and by the ion diamagnetic vorticity Ωd in (22).
In the initial phase a tilted E × B-vorticity dipole is
generated by a finite ion diamagnetic vorticity Ωd and
the term − 1

B

[
∇⊥φ,∇⊥

(
ρ2
ine
)]
xy

in the generalised vor-

ticity density (23) (cf. 4 and [27]). Hence, the motion
of the blobs is no more purely radial and an additional
poloidal motion in the b̂×∇B direction is observed. Sub-
sequently, the tilted E×B-vorticity dipole rolls itself up
and FLR effects lead to the aligning of E ×B vorticity
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FIG. 2: The electron density ne (left), the electron temperature te (centre) and the E ×B vorticity ΩE0 ≈ 1
B0
∇2
⊥φ

(right) is shown for a cold thermal blob with τi = 0, A = 1, σ = 10 at four different time steps
t = {0, 1300, 2600, 5000}Ω−1

i0 . The COM position Rc (dot) and the position of the maximal electron density

amplitude Rmax (star) are visualised at three different time steps t = {1300, 2600, 5000}Ω−1
i0 (green, blue, cyan).

FIG. 3: The electron density ne (left), the ion temperature ti (centre) and the E ×B vorticity ΩE0 ≈ 1
B0
∇2
⊥φ

(right) is shown for a hot thermal blob with τi = 4, A = 1, σ = 10 at three different time steps
t = {0, 875, 1875}Ω−1

i0 . The COM position Rc (dot) and the position of the maximal electron density amplitude

Rmax (star) are visualised at two different time steps t = {875, 1875}Ω−1
i0 (green, blue).

with ion pressure pi. The E × B shear flow produces
a differential rotation, which is strongest at the leading
edge of the blob. This effect helps to retain the initial
rotational symmetry of the blob and decreases the sepa-
ration of small eddies. As a consequence the blob tends
to retain its initial Gaussian structure. This is shown for
electron density ne, ion temperature ti and the E × B
vorticity of an exemplary hot blob in 3. The electron
temperature fields match to a great extent the electron
density fields.

B. Thermal effects on the propagation of a blob

In this section we investigate the propagation of
isothermal and thermal blobs for various ion tempera-
tures, cross-field sizes and initial amplitudes. The posi-
tion of the blob is tracked either by its centre of mass
(COM) or by its maximal electron density amplitude.
We define the COM of a blob by

Rc ≡
1

M

∫
dx (ne − ne0)x, (32)
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FIG. 4: The initial rolling up of the E ×B vorticity
ΩE0 ≈ 1

B0
∇2
⊥φ is shown for a hot thermal blob with

τi = 4, A = 1, σ = 10 at two different time steps
t = {16, 155}Ω−1

i0 .

M ≡
∫
dx (ne − ne0) . (33)

The COM displacement ∆Rc(t) ≡ Rc(t) − Rc(0) =

(∆Xc(t),∆Yc(t))
T

is associated with the time integrated

perpendicular particle transport T ne(t) ≡
∫ t

0
dt′Γne(t′)

via

T ne
(t) ≈M∆Rc(t). (34)

Here, we introduced the perpendicular particle trans-
port Γne

(t) ≡
∫
dxne(uE + u∇B). The position of

the maximal electron density amplitude Rmax is defined
implicitly through ne(Rmax) ≥ ne(x) ∀ x and differs
from the COM position Rc after the initial accelera-
tion phase. It is a good measure for the position of the
blob front. The COM position Rc and the position of
the maximal electron density amplitude Rmax are visu-
alised in 2 and 3. The displacement of the maximal elec-
tron density amplitude Rmax is defined by ∆Rmax(t) ≡
Rmax(t)−Rmax(0) = (∆Xmax(t),∆Ymax(t))

T
.

1. Cold ions

As illustrated in III A the COM motion of cold ion
temperature (τi = 0) blobs is purely radial before the
up-down symmetry is broken. For τi = 0 differences in
the propagation of isothermal and thermal blobs should
be described by our scaling, which we used to derive the
inertial velocity scaling law of (30). 5a shows that the
radial COM displacement ∆Xc for a given time t is in-
creased by the initial amplitude A. In order to quantify
the amplitude scaling of the radial COM displacement
∆Xc, we normalise the radial COM displacement ∆Xc

by the effective blob size σg and the time by the ideal in-
terchange rate γg. This must then result in nearly over-
lapping plots if the velocity scaling estimate of (30) is
correct. This is shown in 5b and reveals that the radial
COM velocities obey the velocity scaling estimate of (30)

in the cold ion limit. 5b also shows that in the initial
phase the radial displacement experiences a constant ac-
celeration phase with ∆Xc(t) ∼ V⊥γgt2, which is followed
by a constant velocity phase with ∆Xc(t) ∼ V⊥t. Hence,
the time integrated radial particle transport depends in
both time phases on the initial electron pressure pertur-
bation ∆pe. The initial electron pressure amplitude is
proportional to ∆pe ∼ ne0∆te + te0∆ne + ∆ne∆te for
a thermal blob whereas it scales like ∆pe ∼ te0∆ne for
an isothermal blob. Consequently, thermal blobs travel
faster radially than isothermal blobs as depicted by 5a.
We discuss the implications of the COM displacement
∆Rc for the (non time integrated) perpendicular parti-
cle transport Γne

in III D.

2. Hot ions

Finite ion temperature effects (τi > 0) redistribute
the total COM momentum into the radial and poloidal
directions. An ion temperature perturbation ∆ti en-
hances the total (radial and poloidal) COM displacement

|∆Rc| ≡
√

∆X2
c + ∆Y 2

c compared to isothermal blobs.
This behaviour is shown for the radial COM displacement
∆Xc in 6a. The normalisation by the effective cross-
field size σg and the ideal interchange rate γg is depicted
in 6b. This figure shows that the normalised radial COM
displacement ∆Xc/σg of isothermal and thermal blobs
nearly coincide in the constant acceleration and velocity
phases. Hence, the radial COM velocities Vc,x are cap-
tured by the inertial velocity scaling estimate V⊥ of (30).
Since this estimate is only suitable for the radial COM
velocities, modifications for total and poloidal velocity
estimates are required. In III D we show that the total
and poloidal velocity scaling laws can be adjusted with
the help of the FLR strength parameter Θ.
In the following we track the radial and poloidal COM
position Rc and investigate the blob propagation for the
complete parameter space.
In 7 we clarify the dependence of the COM displace-
ment Rc on the main parameters (σ, τi, A) for isother-
mal and thermal blobs. We observe that the radial and
poloidal COM displacement ∆Xc and ∆Yc increases with
amplitude A over the complete parameter space. This
is in accordance with the scaling estimates of the ra-
dial COM displacement ∆Xc, presented in III B 1, and
holds similarly for the total COM displacement |∆Rc|.
The poloidal COM displacement ∆Yc is decreased by the
cross-field size σ and is also enhanced by the ratio of
ion to electron background temperature τi. In addition,
a finite ion temperature perturbation ∆ti enhances the
poloidal COM displacement ∆Yc especially for high am-
plitudes A in comparison to isothermal blobs with con-
stant ion temperature ti0. This is in line with the FLR
effect strength parameter Θ of (31) and is further dis-
cussed in III D. We ascribe the small increase of poloidal
motion to dynamic FLR effects. We do so because a
finite ion temperature perturbation ∆ti together with
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FIG. 5: The radial displacement of the COM position ∆Xc as a function of time t is plotted for cold ions τi = 0,
cross-field size σ = 10 and amplitudes A = {0.1, 0.5, 1, 2} (black, red, orange, dark red). Plot (a) shows that the
thermal blobs (solid) travel further into radial direction than isothermal blobs (dot-dashed). In the normalised
double logarithmic plot (b) the dashed dark blue reference line ∆Xc/σg ∼ t2γ2

g illustrates the initial constant
acceleration phase. The transition to the constant velocity phase is represented by the dashed cyan reference line

∆Xc/σg ∼ tγg.
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FIG. 6: The radial displacement of the COM position ∆Xc as a function of time t is plotted for hot ions τi = 2,
cross-field size σ = 10 and amplitudes A = {0.1, 0.5, 1, 2} (black, red, orange, dark red). Plot (a) shows that the
thermal blobs (solid) travel further into radial direction than isothermal blobs (dot-dashed). In the normalised

double logarithmic plot (b) the dashed dark blue reference line ∆Xc/σg ∼ t2γ2
g shows the initial constant

acceleration phase. The transition to the constant velocity phase is represented by the dashed cyan reference line
∆Xc/σg ∼ tγg.

dynamic FLR effects ρi(Ti, B) result in the FLR effect

strength parameter Θ ∼
√

∆p2
i / ((∆pe + ∆pi)pe0). This

exceeds its isothermal, constant FLR effect limit equiv-
alent Θ ∼

√
t2i0∆ne/ ((te0 + ti0)pe0) for all studied pa-

rameters. This difference stems from either constant or
dynamic FLR effects in the polarisation (1). In case of ion
temperature variations ∆ti dynamic FLR effects appear
in the polarisation (1) via the gyroaveraging operator

Γ†i,1 whereas in the isothermal limit constant FLR effects

enter the polarisation (1) via the gyroaveraging operator
Γi,1. In order to ensure that the poloidal motion depends
on constant or dynamic FLR effects, we repeated the sim-

ulations with temperature dynamics (te, Ti) 6= (te0, Ti0)
but constant FLR effects ρi(Ti0, B0). The related nu-
merical results and the influence of FLR effects on the
poloidal particle transport of a blob is presented in III D.
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FIG. 7: The trajectory of the COM position Rc at
t = 8γ−1

g for τi = {0, 0.1, 0.5, 1, 2, 4} (circle, square,
diamond, up triangle, down triangle, star) and

A = {0.1, 0.5, 1, 2} (black, red, orange, dark red) in case
of isothermal (left) and thermal (right) blobs is

pictured. The blob cross-field size is σ = 5 (first row),
σ = 10 (second row) and σ = 20 (third row). The

poloidal displacement ∆Yc of thermal blobs is enhanced
for finite ion background temperature and high
amplitudes in comparison to isothermal blobs.

C. Thermal effects on blob compactness

The ability of a blob to retain its initial shape is given
by the blob compactness IC(t) [27]

IC(t) ≡
∫
dx (ne(x, t)− ne0)h(x, t)∫
dx (ne(x, 0)− ne0)h(x, 0)

, (35)

with the Heaviside function

h(x, t) =

{
1, for ‖x−Rmax(t)‖2 < σ2

0, else
(36)

and with Rmax(t) defined as the position of the maxi-
mum electron density amplitude. The lowering of com-

pactness is accompanied by the loss of mass via collisional
dissipation and turbulent mixing and stretching whereas
a finite Larmor radius contributes to long lived coher-
ent compact structures. Consequently, from 2 and 3 we
expect low compactness for cold blobs and high compact-
ness for hot blobs.
The maximal radial particle transport of a blob is deter-
mined by the blob compactness and the maximal radial
velocity. As a result we plot the blob compactness at
the time t = 4γ−1

g , which approximately coincides with
the first maximum of the radial velocity, versus the FLR
effect strength Θ (cf. (31)) in 8. Note that for high τi
the maximal radial velocity is often reached at the sec-
ond peak in time (see e.g. 11), which is accompanied by a
small drop in compactness IC . In 8 a smooth transition
to highly compact blobs is obtained at Θ ≈ 1. Above
this threshold typically only 10 percent of the initial par-
ticle density is lost whereas below the threshold up to 50
percent of the initial particle density is dissipated. For
constant τi the transition to the ion diamagnetic vortic-
ity dominated regime (Θ � 1) is reached by decreasing
the cross-field size σ or increasing the amplitude of the
blob. The thermal and isothermal blobs approach similar
values of compactness IC over the complete Θ range. We
note here that for the sake of clarity the zero ion temper-
ature value τi = 0 was replaced by τi = 0.01 in order to
compute a finite FLR strength Θ.
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FIG. 8: The compactness of electron density at the time
t = 4γ−1

g as a function of the FLR effect strength is
depicted in a logarithmic plot. The symbols indicate

the blob size σ = {5, 10, 20} (circle, square, down
triangle) and the colour the ratio of ion to electron

background temperature τi = {0, 0.1, 0.5, 1, 2, 4} (cyan,
light cyan, dark cyan, light blue, dark blue, purple).
Filled symbols are thermal blobs and empty symbols

are isothermal blobs.

On the other hand, the FLR strength parameter Θ of
thermal blobs is larger than of isothermal blobs for con-
stant cross-field size σ, amplitude A and ion to electron
background ratio τi. As an example for σ = 10, A = 0.5
and τi = 2 the FLR strength parameter is Θ ≈ 5 for
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thermal blobs and Θ ≈ 3 for isothermal blobs. Conse-
quently, 8 shows that thermal blobs remain more com-
pact than isothermal blobs. This is underlined by 9,
which reveals that thermal blobs with dynamic FLR ef-
fects lose less mass than thermal or isothermal blobs with
constant FLR effects. This is due to differences in the po-
larisation charge density for constant and dynamic FLR
effects, which is discussed in II A. Since the polarisation
charge density is associated to the E ×B vorticity, dy-
namic FLR effects lead to stronger E × B shear flows
in the blob edge in comparison to constant FLR effects.
These E ×B shear flows help to retain the initial blob
shape (cf. III A). As a result the compactness of blobs
with a dynamic gyro-radius is higher than of blobs with
a constant gyro-radius.

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

t Γg

IC

FIG. 9: The compactness IC as a function of
normalised time tγg is shown for hot ions τi = 2,

cross-field size σ = 10 and amplitudes
A = {0.1, 0.5, 1, 2} (black, red,orange,dark red).

Thermal blobs with dynamic FLR effects (solid) remain
more compact than thermal or isothermal blobs with

constant FLR effects (dotted, dot-dashed).

D. Thermal effects on the particle transport of a
blob

In the following we use the COM velocity V c as a
measure for the perpendicular particle transport

Γne
(t) ≈MV c. (37)

The COM velocity is given by:

V c ≡
dRc

dt
. (38)

In the remainder of this section the influence of the ratio
of ion to electron background temperature τi, cross-field
size σ and initial amplitude A on the transport of isother-
mal and thermal blobs is studied.

1. Cold ions
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FIG. 10: The normalised total COM velocity Vc/V⊥ as
a function of normalised time tγg is plotted for cold ions

τi = 0, cross-field size σ = 10 and amplitudes
A = {0.1, 0.5, 1, 2} (black, red, orange, dark red). The
theoretical maximal velocity V⊥ is fitted within twenty

percent and the global ideal interchange rate γg predicts
the time period in which the COM velocity reaches its

maximum up to a constant factor.

In case of zero ion temperature the radial and total
transport coincide. In 10 the maximal COM velocity is
reached after an initial constant acceleration phase and
is captured within twenty percent by the inertial veloc-
ity scaling law V⊥ of (30). The time period to reach the
maximal COM velocity scales with the global ideal inter-
change rate γg of (29).
In 14 the time dependence of the normalised total COM
velocities Vc/V⊥ are plotted. The maximal total COM
velocities Vc agree with the velocity scaling estimates
of (30) but are slightly underestimated by the velocity
scaling estimates of (30) in case of dynamic FLR effects.
The time period to reach this maximum is enhanced for
high blob amplitudes A.

2. Hot ions

Finite ion temperature induces a poloidal COM veloc-
ity in the b̂×∇B direction. The poloidal COM velocity
Vc,y is generated by FLR effects and is further decreased
(cf. 7) if dynamic FLR effects arise as a consequence of
gradients in ion temperature ti or magnetic field B. Con-
sequently, in 11b thermal blobs with full FLR dynamics
show increased absolute values for the normalised mini-
mal poloidal COM velocities min(Vc,y)/V⊥ in comparison
to blobs with constant FLR effects especially for high am-
plitudes.
The behaviour of the normalised radial COM velocities
max(Vc,x)/V⊥ of thermal blobs is similar to blobs with
constant FLR effects as depicted in 11a. The maximal
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FIG. 11: The normalised radial (a) and poloidal (b) COM velocity Vc,x/V⊥ and Vc,y/V⊥ as a function of normalised
time tγg is plotted for hot ions τi = 2, cross-field size σ = 10 and amplitudes A = {0.1, 0.5, 1, 2} (black, red, orange,

dark red). (a) Thermal blobs with dynamics FLR effects (solid) and thermal blobs with constant FLR effects
(dotted) feature similar normalised radial COM velocities as isothermal blobs (dot-dashed). (b) The normalised

minimal poloidal COM velocities of thermal blobs with dynamic FLR effects (solid) are lower than those of blobs
with constant FLR effects (dotted and dot-dashed).
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FIG. 12: The ion to electron background temperature ratio τi dependence of the maximal radial COM velocity
max(Vc,x) for four different amplitudes A = {0.1, 0.5, 1, 2} (black, red, orange, dark red) and three different

cross-field sizes σ are shown. The solid lines represent thermal blobs and the dot-dashed lines isothermal blobs. The
dashed dark blue line represents the V⊥/cs0 ∼

√
1 + τi reference line.
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FIG. 13: The ion to electron background temperature ratio τi dependence of the maximal COM velocity max(Vc)
for four different amplitudes A = {0.1, 0.5, 1, 2} (black, red, orange, dark red) and three different cross-field sizes σ
are shown in a double logarithmic plot. The solid lines represent thermal blobs and the dot-dashed lines isothermal

blobs. The dashed dark blue line represents the V⊥/cs0 ∼
√

1 + τi reference line.

normalised radial COM velocities max(Vc,x)/V⊥ are well
described by the velocity scaling estimates of (30). As
in the cold ion case the maximal radial COM velocities
max(Vc,x) of thermal blobs exceed those of isothermal
blobs, which is shown in 12. However, the ion tem-

perature scaling for the maximal radial and total COM
velocity (cf. 13) is in line with the theoretical estimate
V⊥ ∼

√
1 + τi of (30) for blobs with high cross-field size

σ = 20. For smaller blob sizes σ = 5 and σ = 10 we ob-
serve approximately a decreased scaling V⊥ ∼ (1 + τi)

3/8
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and V⊥ ∼ (1 + τi)
5/12 respectively.
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FIG. 14: The normalised total COM velocity Vc/V⊥ as
a function of normalised time tγg is plotted for hot ions

τi = 2, cross-field size σ = 10 and amplitudes
A = {0.1, 0.5, 1, 2} (black, red, orange, dark red).

Thermal blobs (solid and dotted) and isothermal blobs
(dot-dashed) show up similar behaviour of the total

COM velocity.

To verify the inertial velocity scaling law we plot the mea-
sured maximal radial COM velocities max(Vc,x) against
the analytical estimates V⊥ of (30). Before we do so we
note that all the measured velocities are in the inertial
regime. The ion pressure dominated RB (iRB) velocity
estimate of [12] is not confirmed by our simulations even
if some of the parameters fall into this regime. The iRB
velocity underestimates the numerically obtained max-
imal COM velocities, which is in accordance with [50].
In 15 we prove numerically that the theoretical velocity
estimate of the inertial regime (cf. (30)) is recovered over
more than an order of magnitude for the thermal and
isothermal blobs. All the derived maximal radial COM
velocities lie within 20 percent of the V⊥ estimate, which
underlines the usefulness and quality of the inertial scal-
ing law. We tested also the global amplitude velocity
scaling V⊥,g ∼

√
(∆pe + ∆pi)/(ne0 + ∆ne) of [28, 45].

However, we obtained distinct deviations from the nu-
merically obtained maximal COM velocities max(Vc,x)
by the global inertial scaling law V⊥,g. Hence, we em-
phasise that the inertial velocity scaling law V⊥ of (30)
captures the maximal radial COM velocities max(Vc,x)
best.
In III B, III C and III D we discussed the parameter Θ
defined in (31), which is a measure of the influence of
FLR effects on blob convection. Specifically we argued
that the poloidal and consequently the total transport
is related to the FLR strength parameter Θ. We will
now derive an empirical scaling law for the poloidal and
total particle transport based on the knowledge of our
parameter study. The tracks of the COM position Rc

in 7 indicate that for high FLR strength ((31)) an angle
of −π/4 is taken by the blobs. Hence, we postulate that
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FIG. 15: A double logarithmic plot of the numerically
obtained radial maximal COM velocities max(Vc,x)

versus the velocity scaling estimate V⊥ of (30) is shown.
The thermal (filled symbols) and isothermal (empty

symbols) blob velocities fit excellently to to the
analytical inertial velocity estimate. The grey lines
depict a deviation by twenty percent. The symbols

indicate the parameter σ = {5, 10, 20} (circle, square,
down triangle) and the ion to electron background

temperature ratio τi = {0, 0.1, 0.5, 1, 2, 4} (cyan, light
cyan, dark cyan, light blue, dark blue, purple).

this angle is approached by

α ≡ 1

2

tan−1 (Θ + Θs)− tan−1 (Θs)

1− 2 tan−1 (Θs)/π
, (39)

which is a shifted tan−1 function with shift parameter
Θs. The angle α captures the blob compactness Ic(α) =
c1α + c2 at t = 4γ−1

g up to the constants c1 and c2.

We find that the constants c1 = π
2 , c2 = 1

2 and the shift

parameter θs = 5 fit the blob compactness IC(4γ−1
g ) with

a threshold of 4σ2 (cf. (36)). With (39) we derive the
total and poloidal velocity scaling law

V ≡ V⊥/ cos (α), (40)

Vy ≡ V⊥ tan (α). (41)

In 16 and 17 we compare the derived total and poloidal
inertial scaling law V of (40) and Vy of (41) with
the numerically obtained maximal total COM velocities
max(Vc) and the numerically obtained minimal poloidal
COM velocities min(Vc,y). For the total blob velocities
we find again agreement up to ±20 percent. On the
other hand, the minimal poloidal COM velocities of the
thermal and isothermal blobs are not always within 20
percent of the theoretical estimate of (41). This occurs
especially for very small poloidal velocities. Still, 17 un-
derlines the quality of the empirical scaling law.
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FIG. 16: A double logarithmic plot of the numerically
obtained total maximal COM velocities max(Vc) versus
the empirical velocity scaling estimate V of 40 is shown.

The thermal (filled symbols) and isothermal (empty
symbols) blob velocities fit excellently to the empirical

velocity scaling estimate. The grey lines depict a
deviation by twenty percent. The symbols indicate the
parameter σ = {5, 10, 20} (circle, square, down triangle)
and the ion to electron background temperature ratio
τi = {0, 0.1, 0.5, 1, 2, 4} (cyan, light cyan, dark cyan,

light blue, dark blue, purple).

IV. DISCUSSION AND CONCLUSION

Our simulations reveal that variations in the temper-
ature field increase the radial COM blob velocities. The
maximal radial COM blob velocities obey the inertial
velocity scaling law of (30) over the complete parame-
ter scan, which encompasses a broad spectrum of typical
blob amplitudes A = {0.1, 0.5, 1, 2}, ratios of ion to elec-
tron background temperatures τi = {0, 0.1, 0.5, 1, 2, 4}
and blob cross-field sizes σ = {5, 10, 20}. This coinci-
dence occurs even in the limit of constant temperatures
for the complete parameter space. On the other hand,
the total and poloidal particle transport and the com-
pactness of blobs is crucially determined by the FLR
strength parameter Θ of (31). This parameter describes
the transition from the weak to the strong FLR effect
regime. For weak FLR effects (Θ� 1) we find by plume-
like blob structures in particle density, which primarily
travel in the radial direction with maximal radial COM
velocities captured by the inertial velocity scaling law
of (30). The time to reach the maximal radial COM
velocity is well described by the global interchange rate
of (29). For strong FLR effects (Θ � 1) compact radi-
ally and poloidally moving blob structures are observed
in our numerical study. The inertial velocity scaling law
of (30) estimates the maximal radial COM velocity over
the complete Θ range. In the Θ� 1 limit the numerical
results suggest that the absolute values of the radial and
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FIG. 17: A double logarithmic plot of the numerically
obtained poloidal minimal COM velocities min(Vc,y)

versus the empirical velocity scaling estimate Vy of 41 is
shown. The thermal (filled symbols) and isothermal
(empty symbols) blob velocities fit well to empirical

velocity scaling estimate. The grey lines depict a
deviation by twenty percent. The symbols indicate the
parameter σ = {5, 10, 20} (circle, square, down triangle)
and the ion to electron background temperature ratio
τi = {0, 0.1, 0.5, 1, 2, 4} (cyan, light cyan, dark cyan,

light blue, dark blue, purple).

poloidal COM velocities are equal, leading to the empir-
ical poloidal scaling estimate of (41). The overall per-
pendicular particle transport is affected by the inherent
particle density of a blob, which in the strong FLR ef-
fect regime is roughly 50 percent higher than in the weak
FLR effect regime. The radial particle transport scales
with the square root of the total pressure perturbation
(cf. (30)) and thus increases for finite ion temperature.
To gain insight into the transition between various blob
regimes and the influence of poloidal particle transport
on the divertor heat load fully three dimensional compu-
tations in X-point geometry are in process of planning.
Future plans also involve the study of thermal effects in
the sheath connected regime and the inclusion of FLR
corrections to the polarisation density. According to [28]
those corrections may slightly enhance the propagation
of blobs with high ratios of ion to electron background
temperature, small pressure amplitudes and small blob
widths.
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Appendix A: Dissipation of the generalised vorticity
density

In the following we will show that the dissipative terms
in the generalised vorticity density (23) reduce approx-
imately to a hyperdiffusive term of the form ΛW ≈
−ν∇4

⊥W. For the sake of convenience we show the
derivation for common dissipative terms of first order and
give the result for second order in the end of this section.
The dissipative terms for the gyro-centre densities and
temperatures read:

Λne = ν∇2
⊥ne (A1)

ΛNi = ν∇2
⊥Ni (A2)

Λte = ν∇2
⊥te (A3)

Λti = ν∇2
⊥ti (A4)

Due to our choice of gyro-centre densities N and tem-
peratures T as dependent variables the ion pressure pi is
dissipated according to

Λpi = ν
(
ne∇2

⊥ti + ti∇2
⊥ne

)
= ν

(
∇2
⊥pi − 2∇⊥ti ·∇⊥ne

)
. (A5)

In the generalised vorticity density (23) the full expres-
sion for the dissipation reads

ΛW ≡ Ωi

[
Λne
− ΛNi

+ ∇2
⊥

(
Λpi

2miΩ2
i

)]
. (A6)

We rewrite now the first two terms of (A6) with the help
of (21) to

Λne
− ΛNi

≈ −ν∇2
⊥

[
W
Ωi
−∇2

⊥

(
pi

2miΩ2
i

)]
,

(A7)

and neglect variations in the magnetic field in the last
term of (A6)

∇2
⊥

(
Λpi

2miΩ2
i

)
≈ 1

2miΩ2
i

∇2
⊥Λpi . (A8)

Now it is clear that only for Λpi = ν∇2
⊥pi the com-

plete dissipation of generalised vorticity density reduces
to ΛW = ν∇2

⊥W. This is only possible if the gyro-centre
pressure P is evolved instead of the gyro-centre temper-
ature T . With our choice the dissipative term of the
generalised vorticity density reduces to:

ΛW = ν

[
∇2
⊥W −

1

miΩ2
i

∇2
⊥ (∇⊥ti ·∇⊥ne)

]
. (A9)

The derivation with hyperdiffusive terms of second order
is analogous and yields

ΛW = −ν
[
∇4
⊥W −

2

miΩ2
i

∇4
⊥ (∇⊥ti ·∇⊥ne)

]
. (A10)

We note here that the artificial dissipative term has no
impact on the blob motion in the high Reynolds number
regime.
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