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We present results from simulations of seeded blob convection in the scrape-off-layer of

magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude

levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is

in line with conditions found in tokamak scrape-off-layers (SOL) regions. Varying the ion

temperature, the initial blob width, and the initial amplitude, we found an FLR dominated regime

where the blob behavior is significantly different from what is predicted by cold-ion models. The

transition to this regime is very well described by the ratio of the ion gyroradius to the characteris-

tic gradient scale length of the blob. We compare the global gyrofluid model with a partly linear-

ized local model. For low ion temperatures, we find that simulations of the global model show

more coherent blobs with an increased cross-field transport compared to blobs simulated with the

local model. The maximal blob amplitude is significantly higher in the global simulations than in

the local ones. When the ion temperature is comparable to the electron temperature, global blob

simulations show a reduced blob coherence and a decreased cross-field transport in comparison

with local blob simulations. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4894220]

I. INTRODUCTION

Radially propagating filaments elongated along mag-

netic field lines are responsible for a major part of particle

density, momentum, and energy cross-field transport in the

scrape-off-layer (SOL) in Tokamaks.1–3 These filaments are

widely known as blobs in L-mode operation and ELM fila-

ments in H-mode operation. The particle density amplitude

of such structures compared to the background density can

be well above unity.2–6 This can be seen as a consequence of

the non-local nature of blobs. Blobs are born in the vicinity

of the last closed flux surface, where the plasma is denser,

hotter, and has steeper gradients than in the SOL region.7,8

Furthermore, in the SOL region the ion temperature can be

equal to or even higher than the electron temperature.9–12

Despite these facts, most existing simulations of seeded

blob dynamics are based on models invoking a thin layer

approximation.13–17 Essentially, the thin-layer approxima-

tion linearizes the charge balance equation assuming that the

ion mass entering the polarization density is constant.

Sometimes this approximation is called Boussinesq-

approximation, a term more commonly found in the context

of thermal convection in ordinary fluids. In fact, there are

close similarities between thermal convection in fluids and

the interchange motion in magnetically confined plasmas.16

We refer to these models as “local” models. The lineariza-

tion is done to avoid severe costs in runtime and/or major

challenges in algorithmic development for the solution of the

nonlinear polarization equation in the form of a generalized

Poisson problem. For this kind of problem, fast fourier meth-

ods, which are highly effective for linear problems, are

inefficient. Our work is based on a “global” model derived

from the full-F gyrokinetic equations18 retaining the full non-

linear polarization density. We use discontinuous Galerkin

methods19–21 to discretize spatial derivatives. These methods

have been developed during the last decades and received

increasing attention from the numerical community.22 They

are very versatile in the choice of the desired order of accu-

racy, and they retain a high degree of parallelism in the

resulting algorithm. We exploit this in an implementation for

GPUs and are thus able to efficiently solve the nonlinear

polarization equation in each timestep.

In the past, mostly local drift-fluid models without FLR

effects were used for seeded blob simulations.15,23 Yet, there

has also been efforts to incorporate the fully nonlinear polar-

ization density,24,25 or at least a reduced form of it,26,27 into

these models. References 24 and 25 showed that the cross-

field transport is enhanced by the nonlinear polarization

equation compared to its reduced form. In 3D simulations,

the blob is affected by drift-waves, which dominate the cross

field transport.23,25 References 26 and 27 focussed on deriv-

ing scaling laws for the blob velocity, which for small ampli-

tudes increases with the square root of blob width and

amplitude. Moreover, the effects of sheath dissipation and

dynamical friction on blob motion were investigated.

Reference 28 estimated the velocity scalings for warm ions.

None of these works, however, discussed energetic consis-

tency of the underlying model.

The influence of FLR effects on the convection of

seeded blobs was investigated in Reference 14. A local, ener-

getically consistent gyrofluid model was used. It was shown

that FLR effects can have a profound influence on the cross-

field blob transport in certain parameter regimes. In particu-

lar, FLR effects brake the poloidal up-down symmetry in thea)Electronic mail: Matthias.Wiesenberger@uibk.ac.at
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particle density field and reduce fragmentation compared to

the zero Larmor radius limit.

Here, we present seeded blob simulations using a global

gyrofluid model including FLR effects, which allows studies

of the cross-field transport of high amplitude, finite ion tem-

perature blobs. We investigate transport properties and, fur-

thermore, compare our global model with a local model in

order to test the validity of the thin-layer approximation.

This paper is organized as follows: In Sec. II A, we

introduce the “global” gyrofluid model equations as well as a

mass and an energy theorem. We then discuss “local” model

equations in Sec. II B that we use to investigate the implica-

tions of lifting the thin-layer approximation and derive the

correspondence to existing isothermal drift-fluid models in

Sec. II C. In Sec. III, we present results of seeded blob simu-

lations. In Sec. III A, we discuss the cold ion limit in which

FLR effects are eliminated. Then we explore the parameter

range where FLR effects dominate the blob evolution in Sec.

III B. We present results of global, hot ion, and high ampli-

tude simulations in Sec. III C. We conclude in Sec. IV.

II. GYROFLUID MODELS

Gyrofluid models18,29–31 emerge when taking gyrofluid

moments of the gyrokinetic Vlasov-Maxwell equations.32

Gyrokinetic models describe low-frequency turbulence in

strongly magnetized plasmas. Gyrokinetic theory was devel-

oped to decouple the fast gyration time-scale present in tur-

bulent fusion plasmas while retaining important finite

Larmor radius (FLR) effects and thereby significantly

reduces the computational requirements for numerical simu-

lations. The exact gyrokinetic system is highly complex, so

for practical applications33 limiting forms are used.

Generally, two paths have been pursued: (1) delta-F models

in which gyrokinetic distribution functions are split into sta-

tionary background and small perturbed parts and (2) full-F

models in which finite Larmor radius (FLR) corrections to

the polarization and magnetization densities in Maxwell

equations are neglected, but in which the gyrokinetic distri-

bution functions are not linearized. No a priori assumptions

about fluctuation amplitudes are made in full-F models. Full-

F models are therefore well suited for studies of edge and

scrape-off-layer turbulence and the associated transport in

magnetically confined fusion plasmas.

A. Global gyrofluid model

Here, we will use a gyrofluid model18 derived from the

full-F gyrokinetic model. The gyrofluid model retains all rel-

evant nonlinearities including the full nonlinear polarization

density, while also retaining FLR effects. The gyrofluid

model therefore allows us to investigate the interchange

dominated convection of plasma filaments having large

amplitudes and finite ion temperatures. We restrict ourselves

to a simple paradigmatic two-field model, which describes

the time evolution of the electron particle density n and the

ion gyrocenter density N in a simple, quasi-neutral, isother-

mal, electrostatic plasma in the plane perpendicular to the

magnetic field B at the outboard midplane. Parallel dynamics

along magnetic field lines as well as sheath boundary physics

are absent from the model. We employ a right-handed slab

geometry with orthonormal unit vectors ðx̂; ŷ; ẑÞ with ẑ
aligned with the magnetic field and x̂ anti-parallel to the

magnetic field gradient. The inverse magnetic field strength

is given as 1
B ¼ 1

B0
1þ x

R

� �
, where R is the radial distance to

the inner edge of the plane at the outboard mid-plane. The

equations appear as

@n

@t
þ 1

B
/; nf g þ nK /ð Þ � Te

e
K nð Þ ¼ �r2

?n; (1a)

@N

@t
þ 1

B
w;Nf g þ NK wð Þ þ Ti

e
K Nð Þ ¼ �r2

?N; (1b)

C1N þr � N

XB
r?/

� �
¼ n; (1c)

where Te and Ti denote electron and ion temperature, respec-

tively, � is the collisional diffusion coefficient, X ¼ eB
mi

, and

r? ¼ �ẑ � ðẑ �rÞ. The E� B-advection terms are written

in terms of Poisson brackets, which for two arbitrary func-

tions f and g are defined as

f ; gf g ¼ @f

@x

@g

@y
� @f

@y

@g

@x
: (2)

The compressibility of the perpendicular fluxes is described

by the operator

K ¼ �j
@

@y
; (3)

with j¼ 2/(B0R). The third and fourth terms on the left hand

side of Eq. (1a) represent the compression of the E� B and

the electron grad-B particle-density-fluxes, respectively. The

latter is equivalent to the compression of the electron dia-

magnetic particle density flux, which is only finite when the

magnetic field is inhomogeneous.

Ion FLR effects appear in the quasi-neutrality constraint

Eq. (1c) and in the generalized ion E� B-velocity explicitly

through the Pad�e approximant C1 ¼ ð1� 1
2
q2

i DÞ
�1

to the

gyroaveraging operator,30 where qi ¼
ffiffiffiffiffiffiffiffi

Ti

miX
2
0

q
denotes the

thermal ion gyroradius with the constant ion gyrofrequency

X0¼ eB0/mi. The gyroaveraging operator C1 enters the gen-

eralized ion E� B-velocity through the generalized potential

w :¼ C1/� m
2q juEj2, where uE ¼ ẑ�r/

B denotes the E� B-

velocity. The second term on the left hand side of the quasi-

neutrality constraint Eq. (1c) is the nonlinear polarization

density, which is the gyrofluid representation of ion inertia,

i.e., the ion polarization drift. The first term is the gyroaver-

aged charge contribution of ion gyroorbits belonging to

gyrocenters described by N. The right hand side describes

the electron charge contribution.

The time-evolution of the total particle and ion gyrocen-

ter densities is governed by

d

dt

ð
D

dx n ¼ �
ð

D

dxr2
?n; (4)

d

dt

ð
D

dx N ¼ �
ð

D

dxr2
?N; (5)
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where D is the total simulation domain. In the absence of dif-

fusion, n as well as N are therefore conserved.

To derive the energy conserved by the gyrofluid equa-

tions (1), the electron particle density equation (1a) is multi-

plied by Teð1þ lnnÞ � e/ and is integrated over space. In the

same way, the ion gyrocenter density equation (1b) is multi-

plied by Tið1þ lnNÞ þ ew and is integrated over space. The

equations are integrated by parts and surface terms are

dropped. Note that the gyroaveraging operator C1 is self-

adjoint. Summing the resulting equations and using the quasi-

neutrality constraint Eq. (1c), the energy invariant becomes

d

dt

ð
D

dx Ue þ Ui þ UEð Þ ¼
ð

D

dx UK: (6)

The electron Helmholtz free energy Ue and the ion

Helmholtz-free-like energy Ui are given as

Ue ¼ Tenlnn; Ui ¼ TiNlnN: (7)

The ion gyrocenter density N can be expressed in terms of n
and / through the quasi-neutrality constraint Eq. (1c).

Therefore, Ui describes ion Helmholtz free energy only to

lowest order and will inevitably also include /-dependent

terms. The E� B-energy is defined as

UE ¼
ð

D

dx
1

2
miNu2

E: (8)

An essential observation is that the full ion gyrocenter den-

sity N enters UE. In delta-F based models, the ion gyrocenter

density entering the E� B-energy is constant and hence

weighs all ion gyrocenter densities equally. This approxima-

tion is crude in the presence of high amplitude plasma fila-

ments. Finally, energy dissipation due to particle density

diffusion and ion gyrocenter diffusion becomes

UK ¼
ð

D

dx ½ewþ Tið1þ lnNÞ��r2
?N

� ½e/� Teð1þ lnnÞ��r2
?n: (9)

B. Local gyrofluid model

In most previous works, local models were used to

investigate the convection of seeded blobs.2,14–16 Here, we

denote a model “local” when the polarization density is line-

arized. In order to quantify how the nonlinear polarization

influences blob convection and in order to determine in

which regimes local models are valid, we compare the global

model Eqs. (1) with the following local gyrofluid model:14

@~n

@t
þ 1

B0

/; ~nf g þ n0K /ð Þ � Te

e
K ~nð Þ ¼ �r2

?~n; (10a)

@ ~N

@t
þ 1

B0

C1/; ~N
� �

þ N0K C1/ð Þ þ Ti

e
K ~Nð Þ ¼ �r2

? ~N ;

(10b)

C1
~N þ eN0

Ti
C0 � 1ð Þ/ ¼ ~n; (10c)

where the gyroaverage operator C0 ¼ ð1� q2
ir2
?Þ
�1

describes local finite inertia effects as well as higher order

FLR corrections to the polarization drift;14 n0¼N0 denote

constant reference particle and ion gyrocenter densities,

respectively. We explicitly denote the local electron and ion

gyrocenter densities ~n and ~N in order to distinguish local and

global gyrofluid models. We stress that the thin-layer approxi-

mation is invoked in the model, which can be seen from the

polarization density in Eq. (10c), which in the long wave-

length limit (LWL) equals eN0T�1
i ðC0 � 1Þ/ ’ eN0r2

?/. In

the absence of collisional effects, the local gyrofluid

model14,34 is a superset of local drift fluid models, e.g., see

Refs. 13 and 16. More detailed comparisons between local

and global gyrofluid models as well as drift fluid models will

be given in Sec. II C.

C. Local and global models

Gyrofluid models are remarkably simple compared with

drift fluid models, which include FLR effects, e.g., see Refs.

35 and 36. The reason why gyrofluid models are able to retain

relatively simple functional forms is that much of the com-

plexities associated with FLR effects have been incorporated

into the gyrofluid moments themselves through the underlying

gyrocenter coordinate transformation. The downside to the

simple functional forms is that the corresponding gyrofluid

moments do not directly describe well-known physical quanti-

ties like particle density, electric potential, etc. Consider the

global quasi-neutrality constraint Eq. (1c). It is clear that we

cannot express N in terms of n and / on a closed form.

However, in the long wavelength limit (LWL), we obtain

N ¼ n� q2
i

2
r2
?n�r � n

XB
r?/

� �
; (11)

demonstrating that N depends on particle density, the magnetic

field-aligned component of the E� B-vorticity, and the ion dia-

magnetic vorticity.14 Therefore, it is important always to keep

the composite nature of gyrofluid moments in mind whenever

gyrofluid models are used to describe plasma dynamics and

when gyrofluid models are compared with other models.

To obtain a clearer picture of the dynamics described by

the global gyrofluid model given in Eq. (1), we derive a charge

continuity equation. The charge continuity equation describes

the time-evolution of the magnetic field aligned component of

the E� B-vorticity ẑ � r � uE and is therefore often referred

to as the vorticity equation. This global LWL vorticity equation

is derived by taking the time derivative of the quasi-neutrality

equation (1c) using Eq. (11) to eliminate N

r � n

XB

@

@t
þ 1

B
/;f g

	 

r?/�

� �
¼ Te þ Ti

e
K nð Þ: (12)

Here, diffusive terms are neglected and we have defined

/� ¼ /þ Ti

e
lnn: (13)

The vorticity equation shows that the global gyrofluid model

is a superset of corresponding global drift fluid models26,37

in the absence of collisions.
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Similarly, for the local gyrofluid model Eqs. (10), the

approximate LWL representation of the ion gyrocenter den-

sity becomes

~N ¼ ~n � q2
i

2
r2
?~n � n0

X0B0

r2
?/; (14)

which can be used to derive the local LWL vorticity equation

r � n0

X0B0

@

@t
þ 1

B0

/;f g
	 


r?~/
�

� �
¼ Te þ Ti

e
K ~nð Þ; (15)

where

~/
�

:¼ /þ Ti

e

~n

n0

: (16)

The local vorticity equations equals the drift-fluid vorticity

equation34,38,39 in the absence of collisions, showing that the

local gyrofluid model is a superset of corresponding local

drift-fluid models.

The right hand sides of the LWL local Eq. (15) and

global Eq. (12) vorticity equations are identical. The right

hands sides describe the compression of the electron and ion

diamagnetic fluxes and transfer energy between Helmholtz

free energy end kinetic energy.40

The left hand sides describe the compression of the ion

polarization flux, which consists of the magnetic field aligned

components of E� B-vorticity and ion diamagnetic vorticity.

The ion diamagnetic vorticity, i.e., the ion pressure dependent

part, can be shown to be the manifestation of LWL FLR

effects14,34 in the vorticity equations. In the local model Eq.

(15), the particle density is taken as a constant. This has two im-

mediate consequences. First, the nonlinearity/ rn � r/ enter-

ing the global vorticity equation is absent in the local model.

The implications of this “thin-layer” approximation is a priori

difficult to predict. In the local model, if the ions are cold, the

early blob evolution is characterized by a poloidal dipole struc-

ture in the electric potential, which is p/2 phase shifted with

respect to the density field. Therefore, one could expect that the

nonlinearity in the initial phase plays a minor role. When the

ion temperature is finite, the dipole part of the electric field is

accompanied by an electric field, which circumferences the

density field representing FLR effects.14 Therefore, the nonli-

nearity is expected to influence the blob convection even in the

initial phase when the ion temperature is finite.

Second, in the local model vorticity is everywhere

weighted by n0, which implies that plasma inertia is every-

where constant and therefore independent of the local plasma

density. This approximation enters the “inertial” blob veloc-

ity scaling estimated by dimensional analysis,14,16,26 which

in previous works has shown good agreement with numerical

simulations in the high Reynolds number regime. Neglecting

the nonlinearity, the inertial scaling emerges by balancing

the electric field dependent part of the vorticity with the

compression of the diamagnetic flux. The resulting local and

global perpendicular velocity scalings become

Vlocal ¼ cs

ffiffiffiffiffiffiffiffiffiffi
r
R

Dn

n0

s
; (17a)

Vglobal ¼ cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
R

Dn

n0 þ Dnð Þ

s
: (17b)

Here, Dn is the blob amplitude, cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0ðTe þ TiÞ=mi

p
is the

acoustic speed, and r denotes the characteristic blob size.

Equation (17) also defines the interchange rates

clocal ¼
Vlocal

r
and cglobal ¼

Vglobal

r
: (18)

The global scaling reduces to the local velocity scaling26 for

small perturbation amplitudes Dn/n0 � 1, which predicts a

scaling V?=cs /
ffiffiffiffiffiffi
Dn
p

. The local and global scalings predict

very different blob velocities when Dn/n0� 1. The local scal-

ing does not differentiate small or high perturbation ampli-

tudes, whereas the global scaling predicts that the blob

velocity asymptotically approaches cs

ffiffiffiffiffiffiffiffiffi
r=R

p
.

Another difference between the global and the local

models is that the diamagnetic part of the vorticity is linear-

ized in the local model (see Eq. (16)), whereas the corre-

sponding diamagnetic term in the global model has a

logarithmic dependence. Since the diamagnetic vorticity is

the representation of FLR effects in the vorticity equation,

the local model could potentially overestimate the impor-

tance of FLR effects in the presence of high fluctuation

amplitudes.

Finally, we note a distinct difference between the local

and the global model regarding the extent to which FLR cor-

rections are made to the polarization density. By taking the

low-amplitude limit of the global polarization equation (1c),

the local polarization equation (10c) is not recovered because

FLR corrections residing in the “(C0 – 1)” operator in the

local quasi-neutrality constraint Eq. (10c) are not included in

the global model. The local model is therefore more precise

than the global model when gradient length scales are compa-

rable to the ion gyroradius and amplitudes are small.

Gyrokinetic models, which can handle large fluctuations

amplitudes and gradient length scales comparable to the ion

gyroradius, have been formulated.41 However, compared with

traditional nonlinear gyrokinetic models, these extended mod-

els are significantly more complex. Gyrofluid models based

on extended gyrokinetic models have not been derived yet.

III. SIMULATIONS

In this section, we present results from numerical simu-

lations of the local gyrofluid model Eqs. (10a)–(10c) and the

global gyrofluid model Eqs. (1a)–(1c). All results in this sec-

tion describe simulations of blobs initialized as

n x; y; 0ð Þ ¼ C1N x; y; 0ð Þ

¼ n0 þ Dn exp �
x� x0ð Þ2 þ y� y0ð Þ2

2r2

� �
; (19)

where r is the initial blob width, (x0, y0) the initial position,

and Dn the initial blob amplitude. In this way, the potential

/ðx; y; 0Þ ¼ 0 via the polarization equation. The simulation

domain is a square box D :¼ [0, L]� [0, L], where the box

size is set to L¼ 40r in order to mitigate the influence of the

092301-4 Wiesenberger, Madsen, and Kendl Phys. Plasmas 21, 092301 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

192.38.67.112 On: Fri, 31 Oct 2014 08:46:01



boundaries. For the global gyrofluid model, the y boundaries

are periodic, whereas Dirichlet boundary conditions are cho-

sen at the x boundaries

nð0; y; tÞ ¼ nðL; y; tÞ ¼ Nð0; y; tÞ ¼ NðL; y; tÞ ¼ n0; (20a)

/ð0; y; tÞ ¼ /ðL; y; tÞ ¼ 0: (20b)

The local gyrofluid model is solved on a doubly periodic

domain.

In order to solve Eqs. (1), we use discontinuous

Galerkin (dG) methods19,21,22 to discretize spatial deriva-

tives. The dG methods have the advantage of being high

order accurate and parallelizable. The nonlinear generalized

Poisson equation (1c) translates into a symmetric algebraic

equation,20 which we solve via a conjugate gradient method.

The resulting algorithm is very well suited for current paral-

lel hardware architectures. Our GPU implementation thus

allows to solve the nonlinear polarization equation effi-

ciently. In time, we use an explicit Adams-Bashforth multi-

step method of 3rd order.

We carefully verified our global code with the help of

the conservation equations (5) and (6). In addition, we made

quantitative convergence tests in the L2-norm of density and

potential. With 3002 grid cells, using third order polynomials

in each cell, we ensured that convergence is very well

reached in our global simulations. Note that third order poly-

nomials are defined by 4 coefficients, which makes a total of

(4 � 300)2¼ 12002 discretization points.

For the local model (10), we use a pseudospectral

scheme42 combined with a 2nd order discretization for the

Poisson brackets.43 The diffusive part is integrated implic-

itly. The local simulations use 40962 grid points, which also

ensures convergence for all parameters discussed.

We scanned the parameter space varying s¼ Ti/Te, the

initial blob width r, and the initial amplitude Dn. When com-

paring global to local simulations, we use equal physical pa-

rameters and initial conditions. The major radius is set to

R¼ 4000qs with qs ¼
ffiffiffiffiffiffiffi
miTe

p

eB0
. We fix the ratio of the effective

gravity to the dissipative forces
ð1þsÞr3jDn

�2 ¼ 2� 105 and

thereby determine the diffusion coefficient � given blob

width and amplitude. Note that we also tried to fix the diffu-

sive coefficient to � ¼ 10�2X0q2
s and found only marginal

differences compared to the results presented here. This

means that we are well in the high Reynolds number regime.

The initial blob position is x0¼ 0.25L, y0¼ 0.5L, and we

simulate from 0 to Tmax ¼ 30c�1
local (both local and global

simulations) using approximately 30 000 timesteps. Unless

otherwise indicated, we fix these parameters throughout the

rest of this paper.

A. Cold ion limit

First, we present results from simulations with s¼ 0.

The gyroaveraging operators reduce to C1¼ 1 and
1
s C0 � 1Þ ¼ q2

sr2
?

�
, respectively, and hence FLR effects are

absent from the models. In this limit, the global model Eqs.

(1) is a superset of the local model Eqs. (10). Therefore, the

global model can be used to test the validity of the local

model in this limit. For small amplitudes, we expect the

global and local models to show similar results. In fact, we

can use the limit Dn
n0
� 1 as a consistency check for our nu-

merical implementations.

We first raise the question whether the nonlinearity qual-

itatively changes the blob evolution into a mushroom like

structure, which was observed previously in local models.15

Fig. 1 shows a global simulation with initial blob width

r¼ 10qs and amplitude Dn¼ 4n0. What is shown are contour

plots of the particle density and the magnetic field-aligned

component of the E� B-vorticity b̂ � r � uE 	 r2
?/=B0.

Here and in following plots, we always show the total simu-

lation domain of (40r)2. In the initial phase of the evolution,

the interchange drive term creates a vorticity dipole that

accelerates the blob radially. The dipole accelerates the blob

center faster in the radial direction than the blob front and its

edges. This then leads to a steepening and vertical stretching

of the blob front. The resulting short length scales are subject

to strong diffusion, which in turn leads to a decay of the

maximum amplitude. The ultimate result is the characteristic

mushroom shape with a fast moving blob cap and two lobes

that roll-up and are subject to turbulent mixing. A thorough

discussion of these phenomena is given in Ref. 15.

We observe that all our global simulations for zero ion

temperature retain this behaviour, in particular, the up-down

symmetry as seen in Fig. 1. The reason is that the nonlinear-

ity rN � r/ in the polarization equation (1c) is small since

gradients in N and / are mostly perpendicular. Note that

both the local, as well as the global model contain the sym-

metry braking term j@yn. This is seen by considering the

symmetries in Eqs. (1a) with (12) and (10a) together with

(15), respectively. This term is however small as long as

qs

ffiffi
j
r

p
� 1.

FIG. 1. Density n (top) and vorticity

r2
?/=B0 (bottom) of global blob for

s¼ 0, r¼ 10qs, and Dn¼ 4n0. The first

column corresponds to t¼ 0. Going

from left to right, the time increment is

500X�1
0 . The color scales remain

constant.
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In order to determine if and what “global effects” are

present in our simulations, we need to present more quantita-

tive results. We show radial profiles taken at the symmetry

axis y¼ 0 in Fig. 2, where we compare a global high ampli-

tude simulation to a simulation of the local model with equal

parameters. Note that we reset the origin of the coordinate

system to the initial blob position. We observe that the global

blob is actually much slower than the local blob in the initial

phase of the evolution. We also observe a weaker radial den-

sity gradient at the global blob front when compared to the

very steep local one. This results in a reduced particle den-

sity diffusion for the global blob. While the global blob

keeps a high maximal amplitude at later times, the local blob

quickly looses more than half of its initial amplitude and

slows down. Both blobs thus travel almost the same distance

after 2000X�1
0 , yet at this point in time the amplitude of the

global blob is twice as high as the local one. We conclude

that the global model must indeed be used to simulate blob

convection in this regime.

To quantify our findings further, we plot the maximum am-

plitude and the radial maximum amplitude position for various

initial amplitudes in Figs. 3(a) and 3(b), respectively. The maxi-

mum amplitude at time t is nmaxðtÞ :¼ maxx2Dfnðx; tÞ � n0g,
and xmax denotes the corresponding position. The curves for low

amplitudes almost fall on top of each other as expected. We

observe that in both the local and the global model the amplitude

is reduced with time for all initial amplitudes. However, the am-

plitude in the local model is clearly smaller when compared to

the global one, especially for higher initial amplitudes. We can

also confirm that in the initial phase the radial maximum ampli-

tude positions for global blobs lag behind those of local blobs.

Only at later times global blobs catch up and the maximum am-

plitude positions coincide.

The next step in our discussion is to investigate center

of mass positions and velocities. We define the center of

mass of a blob by

XC :¼ 1Ð
n� n0½ �dx

ð
x n� n0½ �dx : (21)

The center of mass velocity, which is also a measure for the

advective E� B-flux,14 then as follows:

VC :¼ d

dt
XC: (22)

We plot center of mass velocities of local and global blobs

for various amplitudes and fixed blob width r¼ 10qs in Fig.

4. We used the standard Gyro-Bohm scaling in Fig. 4(a).

Again, the center of mass velocities for the blobs with the

smallest amplitudes almost coincide as expected. In accord-

ance with the radial profiles shown in Fig. 2, we observe that

in the beginning of the blob evolution the high amplitude

global blobs accelerate less and thus have lower velocities

when compared with local blobs having identical parameters.

The local blobs reach their maximum velocity earlier in their

evolution and then quickly decelerate. The global blobs take

longer times to reach their maximal velocities and retain

increased speeds in the later phases. This is in line with the

global model using the correct ion inertia, while the local

model uses a constant background one. However, the maxi-

mum velocity is slightly reduced for global, high amplitude

blobs. In order to test whether blob amplitude variations are

captured by the previously derived scaling law for global

blob velocities (17b), we show the same simulation results

using the global interchange rate and velocity as scaling pa-

rameters in Fig. 4(b). The curves do not fall on top of each

other as we might have expected, yet the global scaling

seems to capture the dynamics fairly well.

FIG. 3. Maximum amplitude (a) and radial maximum amplitude position (b) for s¼ 0, and r¼ 10qs, and various initial amplitudes as a function of time. Solid

lines show global, broken lines local simulations.

FIG. 2. Radial particle density profiles of local and global blob at y¼ 0 for

s¼ 0, r¼ 10qs, and Dn¼ 2n0 at various timesteps. The first dashed line

shows the initial blob. Going from left to right, the time increment is

500X�1
0 .
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Kube and Garcia26 have used a drift fluid model to

describe the behaviour of global blobs in the zero ion tem-

perature limit. The local velocity scaling Eq. (17a) was vali-

dated very well for small amplitudes. We note that their

model resembles our model if the term rlnN � r/ in the

polarization equation is neglected and if s¼ 0. We plot the

maximum velocity scaled by the global interchange velocity

(17b) as a function of amplitude in Fig. 5. The scaling is

apparently flawed as neither for low nor for high amplitudes,

the curves are constant horizontal lines. Note that Ref. 26

also failed to recover the velocity scaling in the high ampli-

tude regime although even higher amplitudes than ours were

used in the simulations. One reason might be that the ampli-

tude of the blobs can be significantly decreased by the time

the maximum velocity is actually reached (cf. Fig. 3(a)). The

initial amplitude might thus not be the one that should be

used for the plot. The variation in width is well captured for

amplitudes higher than Dn¼ 1n0. We remark that Ref. 26 did

not vary the blob width, which was absorbed in their scaling.

All in all, we see that the amplitude dependence of the veloc-

ity scaling in Eq. (17b) is not well described by the theoreti-

cal estimate.

B. Finite ion temperature

We now discuss simulations taking a constant finite ion

temperature into account. Local simulations with amplitude

Dn¼ 0.5n0 including FLR effects were first published in Ref.

14. It was found that the blob dynamics is significantly

altered by retaining FLR effects in the model. Blobs move

radially as well as poloidally and stay more coherent com-

pared to zero ion temperature simulations.

Our main point in this section is to investigate differen-

ces between the local and the global gyrofluid model. As

described in the theory of Sec. II C, FLR corrections to the

polarization density are only present in the local model.

These corrections enter as powers of (qik?)2 as seen, e.g., in

Eq. (14). However, only the global model retains the nonlin-

ear polarization density in the polarization equation.

As a first example we choose s¼ 4, r¼ 5qs, and

Dn¼ 0.5n0. From both local and global simulations, we plot

the particle density and vorticity fields in Figs. 6 and 7,

respectively. We loosely estimate ðqik?Þ2 ¼ qiDn
rðn0þDnÞ

� �2

	
0:02� 1 and thus expect only weak FLR effects, at least

during the first timesteps. From the particle density plots, we

see that the qualitative blob movement in the initial phase is

indeed similar in both cases. Both blobs accelerate radially

as well as in the poloidal direction, which in our case is in

fact the b̂ �rB direction, where b̂ points out of the paper

(cf. also Ref. 14). However, in the later phase of the evolu-

tion clear differences can be seen. The global blob is slower

and looses more mass to dissolving vortices that separate

from the main blob. The local blob travels much farther in

the radial direction and retains its initial form during the

whole simulation period. Also the poloidal movements dif-

fer. The local blob reverses its poloidal velocity twice, the

global blob only once.

In Fig. 7, we observe very pronounced differences in the

vorticity between the local and the global model. The local

blob quickly develops a strong and highly localized sheared

flow around the blob. Note that the color scale for the local

case is 20 times higher than that for the global case. This

sheared flow is the reason for the enhanced stability of the

blob shape, which is persistent over the whole simulation pe-

riod.14 The global blob lacks such a violent vorticity roll-up

and is thus unable to maintain its shape loosing mass in

Kelvin-Helmholtz like vortices at later times. Moreover, we

observe more internal structures in the vorticity field.

A possible explanation for the observed differences

between the local and global vorticity fields could be the ab-

sence of the rN � r?/ nonlinearity in the local polarization

equation (1c). We observe that the particle density and the

electric potential gradients align at the blob edge. However,

a closer inspection reveals that the particle density amplitude

FIG. 4. Global and local blob simulations for s¼ 0 and r¼ 10qs. We show the radial center of mass velocity as a function of time normalized by (a) the ion

gyration time X�1
0 and (b) the ideal global interchange time c�1

global. Solid lines show global, broken lines local simulations, respectively.

FIG. 5. Global blob simulations for s¼ 0 and various blob widths. We show

the maximum radial velocity scaled by the global interchange velocity (17b)

as a function of amplitude.
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is very small where the gradients align, so the effects of the

nonlinearity are expected to be small. Another possible ex-

planation is the absence of FLR corrections to the polariza-

tion density in the global polarization equation. These enter

the local polarization equation as

C0 � 1 ¼ ðqir?Þ2½1þ ðqir?Þ2 þ � � ��:

To check whether the differences in the vorticity fields are

indeed due to this factor, we repeated our local simulations

replacing C0 – 1 by a Laplacian in Eq. (10c)

C1
~N þ en0

Te
q2

sr2
?/ ¼ ~n: (23)

We denote this as the modified local model. We plot the cen-

ter of mass velocities of local, modified, and global blobs in

Fig. 8. As in the zero ion temperature case, the velocity in

the initial phase is slightly higher in both local models than

in the global model. At later times we see that the local blob

is up to two times faster than its global and modified counter-

parts. As a side remark we note that velocity peaks coincide

with poloidal turns. The global blob as well as the modified

local blob quickly slows down after the first velocity peak,

probably because the surrounding velocity field, which pre-

vents blob fragmentation, is not as strong in the global and

modified blob as it is in the local blob (cf. Fig. 7). From Fig.

8, we conclude that the FLR corrections to the polarization

density are indeed responsible for the different behaviour of

local and global blobs in the late phase of the blob evolution.

All in all, we conclude that for low amplitudes, small blob

widths, and high ion temperatures, the local model is the

preferable model since FLR corrections are consistently

maintained in the polarization equation, which is not the

case in the global model.

C. High amplitude blobs

We now show global, high amplitude blob simulations

with moderate FLR effects. In this parameter regime, the local

model is not valid. We reduce the ion temperature and increase

the blob width compared to Sec. III B. This reduces the ratio

of ion gyroradius to gradient length scale, which measures

the strength of FLR effects as discussed in Sec. III B. We

exemplarily show contour plots of the particle density and vor-

ticity for s¼ 2, r¼ 10qs, and Dn¼ 2n0 in Fig. 9. The evolu-

tion is best described as a mixture of the high temperature

blobs in the last section and the cold ion blobs in Sec. III A.

FIG. 6. Particle density n of local (top)

and global (bottom) blob for s¼ 4,

r¼ 5qs, Dn¼ 0.5n0. The first column

corresponds to t¼ 0. Going from left

to right, the time increment is 475X�1
0 .

The color scale remains constant.

FIG. 7. Vorticity r2
?/=B0 of local

(top) and global (bottom) blob for

s¼ 4, r¼ 5qs, Dn¼ 0.5n0. Time incre-

ment is 475X�1
0 . Note that the color

scale for the global vorticity is 20

times lower than that of the local one.

FIG. 8. Comparison of global and local blobs for s¼ 4 and r¼ 5qs. In addi-

tion, we modified the local model replacing C0 – 1 by q2
ir2
? in the polariza-

tion equation (cf. Eq. (23)). We show center of mass velocity as a function

of time.
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The blob accelerates radially as well as poloidally in the initial

phase with the vorticity slightly rolling up. Two side-arms

with a pronounced cap develop afterwards, which resembles

the mushroom shapes of cold ion blobs. In the poloidal turn,

the blob becomes stretched and separates from its lobes,

streaming upwards thereafter. Scanning the parameter range

we found that the blob evolution either becomes more mush-

room like for low ion temperature and large blob widths or

more compact for high ion temperature and small widths. Yet,

before we come back to this observation of blob shapes, we

want to examine radial profiles, maximum amplitude position,

and center of mass velocities as we did in Sec. III A.

First, we show radial profiles of the plasma density in

Fig. 10. Since the up-down symmetry of the cold ion blobs is

broken, we take the profiles at the poloidal maximum ampli-

tude position of the blob. Profiles from local and global mod-

els resemble each other. In the vicinity of the maximal

particle density, the profiles are approximately Gaussian

shaped with a fluctuating, low amplitude tail. There are

slightly more fluctuations present in the global curves. When

compared to the profiles in Fig. 2, where s¼ 0, we see that

the low temperature blobs have steeper profiles than the

blobs with s¼ 2. Also the loss of maximum amplitude is not

as pronounced for the warm ion case as it is for the cold ion

case. Furthermore, the local blob always stays ahead of the

global one.

Next, we plot the maximum amplitude as a function of

time in Fig. 11. As expected the small amplitude curves

coincide. Contrary to Fig. 3(a) in Sec. III A, which is the

zero ion temperature version of Fig. 11, we find that now

local blobs retain their amplitude better than their global

counterparts. With regard to the preceding discussion of blob

stability this does not come as a surprise. Local blobs stay

coherent during the whole simulation time and keep mass

and hence amplitude almost constant.

In order to test the global velocity scaling (17b), we

examine the radial center of mass velocity as a function of

time. In Fig. 12(a), we see that the global scaling captures

the ion temperature variation very well. The variation of am-

plitude is, like in Sec. III A, only partly captured. In both fig-

ures, we see that the velocity in the initial phase increases

almost linearly until it reaches a maximum and decreases

again. At about 7c�1
global there is a sudden transition where the

blob velocity stabilizes at an almost constant value until it

finally drops down to smaller values again. When inspecting

the particle density plots in Fig. 9, the transition takes place

at the point where the lobes of the blob start to curl and roll

up. The second drop of velocity occurs when the blob starts

to fragment at about 13c�1
global.

We now come back to the observation that blobs have a

tendency to either develop a mushroom shape, to retain a

more coherent blob-like structure, or a mixture of both. We

use the definition of blob compactness14

IC tð Þ :¼
Ð

Ddx n x; y; tð Þ � n0ð Þh x; y; tð ÞÐ
Ddx n x; y; 0ð Þ � n0ð Þh x; y; 0ð Þ ; (24)

where h is defined as a Heaviside function

FIG. 9. Density n (top) and vorticity

r2
?/=B0 (bottom) plot of global blob

for s¼ 2, r¼ 10qs, and Dn¼ 2n0. The

first column corresponds to t¼ 0.

Going from left to right, the time incre-

ment is 430X�1
0 . The color scale

remains constant.

FIG. 10. Radial particle density profiles for r¼ 10qs, Dn¼ 2n0, and s¼ 2.

The profiles are taken at the poloidal maximum amplitude position at time

(from left to right) 287, 2 � 287, 3 � 287, 4 � 287, and 5 � 287X�1
0 .

FIG. 11. Maximum amplitude for r¼ 10qs and s¼ 2 as a function of time.

Solid lines show global, broken lines local simulations.
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hðx; y; tÞ :¼


1 if ðx� xmaxðtÞÞ2 þ ðy� ymaxðtÞÞ2 < r2;
0 else:

(25)

The integration is thus performed on a circular field of radius

r around the maximum amplitude position.

IC is a measure for the ability of the blob to retain its

form and mass. A small compactness means that the blob

has lost most of its initial mass or is spread out over a large

area. The mushroom shapes in Sec. III A should, e.g., have a

small compactness. A high compactness means that the blob

preserves its initial particle density. The high ion tempera-

ture blobs in Sec. III B should correspondingly have a high

compactness. In Fig. 13, we show the blob compactness at

time t ¼ 10c�1
global as a function of the FLR strength modeled

by the control parameter

r ¼ qi

r
Dn

n0 þ Dnð Þ ; (26)

where r is the ratio between the ion gyroradius and the initial

gradient length scale, which we have already used in the pre-

ceding discussions. In line with the results presented in Ref.

14, we identify a transition between r¼ 0 and r¼ 0.075

where IC increases significantly. For higher values of r, the

compactness constantly fluctuates around 0.8 for all parame-

ters investigated in this regime. For low values of r, the

compactness is a factor 2–3 times smaller, showing that blob

mass in this regime will rather spread out or diffuse away.

Furthermore, blobs with very low FLR effects show a signifi-

cant variation of compactness when amplitude is varied. The

smallest values for IC in our plot can be observed for the low

amplitude Dn¼ 0.1n0. When amplitude is increased, the blob

compactness increases as well.

We remark that the cold ion simulations in Sec. III A

are found on the left side of the plot at r¼ 0. The high tem-

perature simulations in Sec. III B are on the far right side,

while the simulations presented in this section are found in

between. Our plot thus shows that r, being a combination of

blob parameters s, Dn, and r only, is a very good indicator

of whether a blob can retain its mass during its evolution or

not.

IV. CONCLUSION

We showed that we can numerically solve the nonlinear

polarization equation in the context of a mass and energy

conserving, 2D gyrofluid model. The model was used to

investigate blob dynamics of seeded blobs in the tokamak

scrape-off-layer. We identified two regimes of blob convec-

tion. Blobs, defined as the vicinity of the maximal amplitude

position, quickly loose mass in the first and retain their mass

in the second regime as they propagate radially. Our simula-

tions indicate that over a wide range of parameters, namely,

ion temperature, initial blob width, and initial blob ampli-

tude, these two regimes are characterised by the ratio of ion

gyroradius to the initial gradient scale length. This ratio is

interpreted as a measure for the strength of FLR effects.

Blobs with a low ratio belong to the first, blobs with strong

FLR effects belong to the second regime.

Furthermore, we investigated the importance of using a

global, fully nonlinear model in contrast to a local thin layer

approximation for blob simulations. For low ion tempera-

tures and high blob amplitudes, we find that global blobs

stay more coherent and have an increased cross-field trans-

port compared to local model simulations. The amplitude in

global simulations remains significantly higher than in local

simulations with equal initial amplitudes. When the ion tem-

perature is comparable to the electron temperature, global

blob simulations show a decreased cross-field transport in

comparison with local blob simulations. Yet, for low ampli-

tudes we find that the local model is preferable since FLR

FIG. 12. Radial center of mass velocity as a function of time, for r¼ 10qs. We vary the ion temperature for fixed amplitude Dn/n0¼ 2 (a) and the amplitude

for fixed ion temperature s¼ 2 (b).

FIG. 13. Blob compactness IC of global blobs as a function of FLR strength

at time t ¼ 10c�1
global for various amplitudes and blob widths.
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corrections to the polarization density are absent from the

global model.
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