10,171 research outputs found
Seasonal Biomass and Carbohydrate Allocation Patterns in Southern Minnesota Curlyleaf Pondweed Populations
Four southern Minnesota populations of curlyleaf pondweed
(
Potamogeton crispus
L.) were sampled monthly from
January 2001 to November 2002 to determine seasonal phenological,
biomass, and carbohydrate allocation patterns.
Low periods of carbohydrate storage in the seasonal phenological
cycle indicate potentially vulnerable periods in the
plant’s life cycle and may be the ideal time to initiate management
and control efforts
Recommended from our members
Evaluating the Diversity of Emergency Medicine Foundation (EMF) Grant Recipients in the Last Decade
On behalf of the ACEP Research CommitteeIntroduction: To study diversity of researchers and barriers to success among Emergency Medicine Foundation (EMF) grant recipients in the last 10 years.Methods: EMF grant awardees were approached to complete a brief survey, which included demographics, queries related to contributions to the literature, success in obtaining grants, and any perceived barriers they encountered.Results: Of the 342 researchers contacted by email, a total of 147 completed the survey for a response rate of 43%. The respondents were predominately mid to late career white-male-heterosexual-Christian with an average age of 44 years (range 25-69 years of age). With regards to training and education, the majority of respondents (50%) were either Associate or Professor clinical rank (8% instructor/resident/fellow and 31% Assistant). Sixty-two percent of the respondents reported perceived barriers to career advancement since completion of residency. The largest perceived barrier to success was medical specialty (26%), followed by gender (21%) and age (16%).Conclusion: Our survey of EMF grant recipients in the last 10 years shows a considerable lack of diversity. The most commonly perceived barriers to career advancement by this cohort were medical specialty, gender, and age. An opportunity exists for further definition of barriers and development of mechanisms to overcome them, with a goal of increased success for those that are underrepresented.
Lifting the Veil on Obscured Accretion: Active Galactic Nuclei Number Counts and Survey Strategies for Imaging Hard X-Ray Missions
Finding and characterizing the population of active galactic nuclei (AGNs) that produces the X-ray background (XRB) is necessary to connect the history of accretion to observations of galaxy evolution at longer wavelengths. The year 2012 will see the deployment of the first hard X-ray imaging telescope which, through deep extragalactic surveys, will be able to measure the AGN population at the energies where the XRB peaks (~20-30 keV). Here, we present predictions of AGN number counts in three hard X-ray bandpasses: 6-10 keV, 10-30 keV, and 30-60 keV. Separate predictions are presented for the number counts of Compton thick AGNs, the most heavily obscured active galaxies. The number counts are calculated for five different models of the XRB that differ in the assumed hard X-ray luminosity function, the evolution of the Compton thick AGNs, and the underlying AGN spectral model. The majority of the hard X-ray number counts will be Compton thin AGNs, but there is a greater than tenfold increase in the Compton thick number counts from the 6-10 keV to the 10-30 keV band. The Compton thick population shows enough variation that a hard X-ray number counts measurement will constrain the models. The computed number counts are used to consider various survey strategies for the NuSTAR mission, assuming a total exposure time of 6.2 Ms. We find that multiple surveys will allow a measurement of Compton thick evolution. The predictions presented here should be useful for all future imaging hard X-ray missions
Semiclassical two-step model for strong-field ionization
We present a semiclassical two-step model for strong-field ionization that
accounts for path interferences of tunnel-ionized electrons in the ionic
potential beyond perturbation theory. Within the framework of a classical
trajectory Monte-Carlo representation of the phase-space dynamics, the model
employs the semiclassical approximation to the phase of the full quantum
propagator in the exit channel. By comparison with the exact numerical solution
of the time-dependent Schr\"odinger equation for strong-field ionization of
hydrogen, we show that for suitable choices of the momentum distribution after
the first tunneling step, the model yields good quantitative agreement with the
full quantum simulation. The two-dimensional photoelectron momentum
distributions, the energy spectra, and the angular distributions are found to
be in good agreement with the corresponding quantum results. Specifically, the
model quantitatively reproduces the fan-like interference patterns in the
low-energy part of the two-dimensional momentum distributions as well as the
modulations in the photoelectron angular distributions.Comment: 31 pages, 7 figure
Summary of the 13th IACHEC Meeting
We summarize the outcome of the 13th meeting of the International
Astronomical Consortium for High Energy Calibration (IACHEC), held at Tenuta
dei Ciclamini (Avigliano Umbro, Italy) in April 2018. Fifty-one scientists
directly involved in the calibration of operational and future high-energy
missions gathered during 3.5 days to discuss the current status of the X-ray
payload inter-calibration and possible approaches to improve it. This summary
consists of reports from the various working groups with topics ranging from
the identification and characterization of standard calibration sources,
multi-observatory cross-calibration campaigns, appropriate and new statistical
techniques, calibration of instruments and characterization of background, and
communication and preservation of knowledge and results for the benefit of the
astronomical community.Comment: 12 page
Chiral phase properties of finite size quark droplets in the Nambu--Jona-Lasinio model
Chiral phase properties of finite size hadronic systems are investigated
within the Nambu--Jona-Lasinio model. Finite size effects are taken into
account by making use of the multiple reflection expansion. We find that, for
droplets with relatively small baryon numbers, chiral symmetry restoration is
enhanced by the finite size effects. However the radius of the stable droplet
does not change much, as compared to that without the multiple reflection
expansion.Comment: RevTex4, 9 pages, 6 figures, to be published in Phys. Rev.
How to identify a Strange Star
Contrary to young neutron stars, young strange stars are not subject to the
r-mode instability which slows rapidly rotating, hot neutron stars to rotation
periods near 10 ms via gravitational wave emission. Young millisecond pulsars
are therefore likely to be strange stars rather than neutron stars, or at least
to contain significant quantities of quark matter in the interior.Comment: 4 pages, 1 figur
Dynamical evolution of the Universe in the quark-hadron phase transition and possible nugget formation
We study the dynamics of first-order phase transition in the early Universe
when it was old with quarks and gluons condensing into hadrons.
We look at how the Universe evolved through the phase transition in small as
well as large super cooling scenario, specifically exploring the formation of
quark nuggets and their possible survival. The nucleation of the hadron phase
introduces new distance scales in the Universe, which we estimate along with
the hadron fraction, temperature, nucleation time etc. It is of interest to
explore whether there is a relic signature of this transition in the form of
quark nuggets which might be identified with the recently observed dark objects
in our galactic halo and account for the Dark Matter in the Universe at
present.Comment: LaTeX file with four postscript figure
Closed forms and multi-moment maps
We extend the notion of multi-moment map to geometries defined by closed
forms of arbitrary degree. We give fundamental existence and uniqueness results
and discuss a number of essential examples, including geometries related to
special holonomy. For forms of degree four, multi-moment maps are guaranteed to
exist and are unique when the symmetry group is (3,4)-trivial, meaning that the
group is connected and the third and fourth Lie algebra Betti numbers vanish.
We give a structural description of some classes of (3,4)-trivial algebras and
provide a number of examples.Comment: 36 page
- …
