363 research outputs found
Evidence of Particle Acceleration in the Superbubble 30 Doradus C with NuSTAR
We present evidence of diffuse, non-thermal X-ray emission from the
superbubble 30 Doradus C (30 Dor C) using hard X-ray images and spectra from
NuSTAR observations. For this analysis, we utilize data from a 200 ks targeted
observation of 30 Dor C as well as 2.8 Ms of serendipitous off-axis
observations from the monitoring of nearby SN 1987A. The complete shell of 30
Dor C is detected up to 20 keV, and the young supernova remnant MCSNR
J0536-6913 in the southeast of 30 Dor C is not detected above 8 keV.
Additionally, six point sources identified in previous Chandra and XMM-Newton
investigations have hard X-ray emission coincident with their locations. Joint
spectral fits to the NuSTAR and XMM-Newton spectra across the 30 Dor C shell
confirm the non-thermal nature of the diffuse emission. Given the best-fit
rolloff frequencies of the X-ray spectra, we find maximum electron energies of
70-110 TeV (assuming a B-field strength of 4G), suggesting 30 Dor C is
accelerating particles. Particles are either accelerated via diffusive shock
acceleration at locations where the shocks have not stalled behind the
H shell, or cosmic-rays are accelerated through repeated acceleration
of low-energy particles via turbulence and magnetohydrodynamic waves in the
bubble's interior.Comment: 14 pages, 8 figures, ApJ, in pres
NuSTAR observations of the young, energetic radio pulsar PSR B1509-58
We report on Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray
observations of the young rotation-powered radio pulsar PSR B150958 in the
supernova remnant MSH 1552. We confirm the previously reported curvature in
the hard X-ray spectrum, showing that a log parabolic model provides a
statistically superior fit to the spectrum compared with the standard power
law. The log parabolic model describes the NuSTAR data, as well as previously
published gamma-ray data obtained with COMPTEL and AGILE, all together spanning
3 keV through 500 MeV. Our spectral modelling allows us to constrain the peak
of the broadband high energy spectrum to be at 2.60.8 MeV, an improvement
of nearly an order of magnitude in precision over previous measurements. In
addition, we calculate NuSTAR spectra in 26 pulse phase bins and confirm
previously reported variations of photon indices with phase. Finally, we
measure the pulsed fraction of PSR B150958 in the hard X-ray energy band for
the first time. Using the energy resolved pulsed fraction results, we estimate
that the pulsar's off-pulse emission has a photon index value between 1.26 and
1.96. Our results support a model in which the pulsar's lack of GeV emission is
due to viewing geometry, with the X-rays originating from synchrotron emission
from secondary pairs in the magnetosphere.Comment: 10 pages, 8 figures, 6 tables, ApJ accepte
High-Energy Astrophysics in the 2020s and Beyond
With each passing decade, we gain new appreciation for the dynamic,
connected, and often violent nature of the Universe. This reality necessarily
places the study of high-energy processes at the very heart of modern
astrophysics. This White Paper illustrates the central role of high-energy
astrophysics to some of the most pressing astrophysical problems of our time,
the formation/evolution of galaxies, the origin of the heavy elements, star and
planet formation, the emergence of life on exoplanets, and the search for new
physics. We also highlight the new connections that are growing between
astrophysicists and plasma physicists. We end with a discussion of the
challenges that must be addressed to realize the potential of these
connections, including the need for integrated planning across physics and
astronomy programs in multiple agencies, and the need to foster the creativity
and career aspirations of individual scientists in this era of large projects.Comment: Astro2020 White Paper submissio
Optimizations of Pt/SiC and W/Si multilayers for the Nuclear Spectroscopic Telescope Array
The Nuclear Spectroscopic Telescope Array, NuSTAR, is a NASA funded Small Explorer Mission, SMEX, scheduled for launch in mid 2011. The spacecraft will fly two co-aligned conical approximation Wolter-I optics with a focal length of 10 meters. The mirrors will be deposited with Pt/SiC and W/Si multilayers to provide a broad band reflectivity from 6 keV up to 78.4 keV. To optimize the mirror coating we use a Figure of Merit procedure developed for gazing incidence optics, which averages the effective area over the energy range, and combines an energy weighting function with an angular weighting function to control the shape of the desired effective area. The NuSTAR multilayers are depth graded with a power-law, d_i = a/(b + i)^c, and we optimize over the total number of bi-layers, N, c, and the maximum bi-layer thickness, d_(max). The result is a 10 mirror group design optimized for a flat even energy response both on and off-axis
Kiloparsec-scale Spatial Offsets in Double-peaked Narrow-line Active Galactic Nuclei. I. Markers for Selection of Compelling Dual Active Galactic Nucleus Candidates
Merger-remnant galaxies with kpc-scale separation dual active galactic nuclei
(AGNs) should be widespread as a consequence of galaxy mergers and triggered
gas accretion onto supermassive black holes, yet very few dual AGNs have been
observed. Galaxies with double-peaked narrow AGN emission lines in the Sloan
Digital Sky Survey are plausible dual AGN candidates, but their double-peaked
profiles could also be the result of gas kinematics or AGN-driven outflows and
jets on small or large scales. To help distinguish between these scenarios, we
have obtained spatial profiles of the AGN emission via follow-up long-slit
spectroscopy of 81 double-peaked narrow-line AGNs in SDSS at 0.03 < z < 0.36
using Lick, Palomar, and MMT Observatories. We find that all 81 systems exhibit
double AGN emission components with ~kpc projected spatial separations on the
sky, which suggests that they are produced by kpc-scale dual AGNs or kpc-scale
outflows, jets, or rotating gaseous disks. In addition, we find that the
subsample (58%) of the objects with spatially compact emission components may
be preferentially produced by dual AGNs, while the subsample (42%) with
spatially extended emission components may be preferentially produced by AGN
outflows. We also find that for 32% of the sample the two AGN emission
components are preferentially aligned with the host galaxy major axis, as
expected for dual AGNs orbiting in the host galaxy potential. Our results both
narrow the list of possible physical mechanisms producing the double AGN
components, and suggest several observational criteria for selecting the most
promising dual AGN candidates from the full sample of double-peaked narrow-line
AGNs. Using these criteria, we determine the 17 most compelling dual AGN
candidates in our sample.Comment: 12 pages, 8 figures, published in ApJ. Modified from original version
to reflect referee's comment
Observational Artifacts of NuSTAR: Ghost Rays and Stray Light
The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012,
flies two conical approximation Wolter-I mirrors at the end of a 10.15m mast.
The optics are coated with multilayers of Pt/C and W/Si that operate from 3--80
keV. Since the optical path is not shrouded, aperture stops are used to limit
the field of view from background and sources outside the field of view.
However, there is still a sliver of sky (~1.0--4.0 degrees) where photons may
bypass the optics altogether and fall directly on the detector array. We term
these photons Stray-light. Additionally, there are also photons that do not
undergo the focused double reflections in the optics and we term these Ghost
Rays. We present detailed analysis and characterization of these two components
and discuss how they impact observations. Finally, we discuss how they could
have been prevented and should be in future observatories.Comment: Published in Journal of Astronomical Telescopes, Instruments, and
Systems. Open Access. http://dx.doi.org/10.1117/1.JATIS.3.4.04400
Arcus: the soft x-ray grating explorer
Arcus provides high-resolution soft X-ray spectroscopy in the 12-50 Ã… bandpass with unprecedented sensitivity, including spectral resolution < 2500 and effective area < 250 cm^2. The three top science goals for Arcus are (1) to measure the effects of structure formation imprinted upon the hot baryons that are predicted to lie in extended halos around galaxies, (2) to trace the propagation of outflowing mass, energy, and momentum from the vicinity of the black hole to extragalactic scales as a measure of their feedback, and (3) to explore how stars form and evolve. Arcus uses the same 12 m focal length grazing-incidence Silicon Pore X-ray Optics (SPOs) that ESA has developed for the Athena mission; the focal length is achieved on orbit via an extendable optical bench. The focused X-rays from these optics are diffracted by high-efficiency Critical-Angle Transmission (CAT) gratings, and the results are imaged with flight-proven CCD detectors and electronics. Combined with the high-heritage NGIS LEOStar-2 spacecraft and launched into 4:1 lunar resonant orbit, Arcus provides high sensitivity and high efficiency observing of a wide range of astrophysical sources
- …