31 research outputs found

    In-Situ X-ray Diffraction Analysis of Metastable Austenite Containing Steels Under Mechanical Loading at a Wide Strain Rate Range

    Get PDF
    This paper presents and discusses the methodology and technical aspects of mechanical tests carried out at a wide strain rate range with simultaneous synchrotron X-ray diffraction measurements. The motivation for the study was to develop capabilities for in-situ characterization of the loading rate dependency of mechanically induced phase transformations in steels containing metastable austenite. The experiments were carried out at the DanMAX beamline of the MAX IV Laboratory, into which a custom-made tensile loading device was incorporated. The test setup was supplemented with in-situ optical imaging of the specimen, which allowed digital image correlation-based deformation analysis. All the measurement channels were synchronized to a common time basis with trigger signals between the devices as well as post-test fine tuning based on diffraction ring shape analysis. This facilitated precise correlation between the mechanical and diffraction data at strain rates up to 1 s−1 corresponding to test duration of less than one second. Diffraction data were collected at an acquisition rate of 250 Hz, which provided excellent temporal resolution. The feasibility of the methodology is demonstrated by providing novel data on the kinetics of the martensitic phase transformation in EN 1.4318-alloy following a rapid increase in strain rate (a so-called jump test).publishedVersionPeer reviewe

    Multipole electron densities and atomic displacement parameters in urea from accurate powder X-ray diffraction

    No full text
    Electron density determination based on structure factors obtained through powder X-ray diffraction has so far been limited to high-symmetry inorganic solids. This limit is challenged by determining high-quality structure factors for crystalline urea using a bespoke vacuum diffractometer with imaging plates. This allows the collection of data of sufficient quality to model the electron density of a molecular system using the multipole method. The structure factors, refined parameters as well as chemical bonding features are compared with results from the high-quality synchrotron single-crystal study by Birkedal et al. [Acta Cryst. (2004), A60, 371–381] demonstrating that powder X-ray diffraction potentially provides a viable alternative for electron density determination in simple molecular crystals where high-quality single crystals are not available

    High-Performance Low-Cost n-Type Se-Doped Mg3Sb2-Based Zintl Compounds for Thermoelectric Application

    No full text
    Thermoelectric materials, capable of converting heat directly into electricity without moving parts, provide a promising solid-state solution for waste heat harvesting. However, currently available commercial thermoelectric materials PbTe and Bi2Te3 are based on tellurium, an extremely scarce and expensive element, which prohibits large scale applications. Herein, we present a systematic study on a new low-cost Te-free material, n-type Se-doped Mg3Sb1.5Bi0.5, by combining the structure and property characterization with electronic structure and electrical transport modeling. Compared with pure Mg3Sb2, Se-doped Mg3Sb1.5Bi0.5 shows the considerably enhanced power factor as well as much lower thermal conductivity. The excellent electrical transport originates from a nontrivial near-edge conduction band with six conducting carrier pockets and a light conductivity effective mass as well as the weak contribution from a secondary conduction band with a valley degeneracy of 2. The accurate location of the conduction band minimum is revealed from the Fermi surface, which appears to be crucial for the understanding of the electronic transport properties. In addition, the total thermal conductivity is found to be reasonably low (∼0.62 W m-1 K-1 at 725 K). As a result, an optimal zT of 1.23 at 725 K is obtained in Mg3.07Sb1.5Bi0.48Se0.02. The high zT, as well as the earth-abundant constituent elements, makes the low-cost Se-doped Mg3Sb1.5Bi0.5 a promising candidate for the intermediate-temperature thermoelectric application. Moreover, the systematic electronic structure and transport modeling provide an insightful guidance for the further optimization of this material and other related Zintl compounds

    A Local Atomic Mechanism for Monoclinic-Tetragonal Phase Boundary Creation in Li-Doped Na0.5K0.5NbO3Ferroelectric Solid Solution

    No full text
    ABO3 perovskites display a wide range of phase transitions, which are driven by A/B-site centered polyhedral distortions and/or BO6 octahedral tilting. Since heterogeneous substitutions at the A/B-site can locally alter both polyhedral distortions and/or tilting, they are often used to create phase boundary regions in solid solutions of ABO3, where the functional properties are highly enhanced. However, the relationships between doping-induced atomistic structural changes and the creation of phase boundaries are not always clear. One prominent example of this is the Li-doped K0.5Na0.5NbO3 (KNNL), which is considered a promising alternative to traditional Pb-based ferroelectrics. Although the electromechanical properties of KNNL are enhanced for compositions near the morphotropic phase boundary (MPB), the atomistic mechanism for phase transitions is not well understood. Here, we combined neutron total scattering experiments and density functional theory to investigate the long-range average and short-range (∼10 Å) structural changes in KNNL. We show that the average monoclinic-to-tetragonal (M-T) transition across the MPB in KNNL can be described as an order-disorder-type change, which is driven by competition between a longer-range polarization field of monoclinic structural units and local distortions of the disordered AO12 polyhedra. The current study demonstrates a way to clarify dopant-induced local distortions near phase boundaries in complex solid solution systems, which will be important for the rational design of new environmentally sustainable ferroelectrics

    A simple correction for the parallax effect in X-ray pair distribution function measurements

    No full text
    X-ray free-electron lasers have, over the past decade, opened up the possibility of understanding the ultrafast response of matter to intense X-ray pulses. In earlier research on atoms and small molecules, new aspects of this response were uncovered, such as rapid sequences of inner-shell photoionization and Auger ionization. Here, we studied a larger molecule, buckminsterfullerene (C60), exposed to 640 eV X-rays, and examined the role of chemical effects, such as chemical bonds and charge transfer, on the fragmentation following multiple ionization of the molecule. To provide time resolution, we performed femtosecond-resolved X-ray pump/X-ray probe measurements, which were accompanied by advanced simulations. The simulations and experiment reveal that despite substantial ionization induced by the ultrashort (20 fs) X-ray pump pulse, the fragmentation of C60 is considerably delayed. This work uncovers the persistence of the molecular structure of C60, which hinders fragmentation over a timescale of hundreds of femtoseconds. Furthermore, we demonstrate that a substantial fraction of the ejected fragments are neutral carbon atoms. These findings provide insights into X-ray free-electron laser-induced radiation damage in large molecules, including biomolecules

    Effect of A-site substitutions on energy storage properties of BaTiO 3 -BiScO 3 weakly coupled relaxor ferroelectrics

    No full text
    Weakly coupled relaxors based on compositions (1-x) BaTiO 3 -xBiMeO 3 , where Me is a metal ion, have attracted attention as potential candidates for high-temperature high-energy density capacitors. However, the necessary Bi content is typically high with x = 0.3-0.4. In order to reduce problems associated with compatibility for base metal electrodes and due to additional problems due to Bi volatility, it is desirable to lower the Bi content in the overall composition for these materials. Here, we have explored a possible way to reduce BiMeO 3 content through additional A-site substitutions viz. Ca and Sn. The relaxor nature and energy storage properties of Sn-modified (Ba,Ca)(Ti)O 3 -BiScO 3 ceramics were determined from their dielectric and ferroelectric behaviors. The material showed attractive properties in terms of a frequency-independent (200 Hz-1 MHz) dielectric response from room temperature to 200°C, extremely low loss and high-energy storage efficiency. The structural phenomena underlying the functional properties of Sn-modified (Ba,Ca)TiO 3 -BiScO 3 are characterized from temperature-dependent X-ray diffraction and pair distribution function analysis. In broader terms, the study illustrates the potential for tailoring relaxor behavior in Pb-free ferroelectrics by combining phenomena, such as quantum fluctuations and lone pair stereochemical effect associated with different solid-solution substitutions

    Effect of chain length on swelling transitions of Brodie graphite oxide in liquid 1-alcohols

    No full text
    Swelling is the most fundamental property of graphite oxides (GO). Here, a structural study of Brodie graphite oxide (BGO) swelling in a set of long chain 1-alcohols (named C11 to C22 according to the number of carbons) performed using synchrotron radiation X-ray diffraction at elevated temperatures is reported. Even the longest of tested alcohols (C22) is found to intercalate BGO with enormous expansion of the interlayer distance from ≈6Å up to ≈63Å, the highest expansion of GO lattice ever reported. Swelling transitions from low temperature α-phase to high temperature β-phase are found for BGO in all alcohols in the C11–C22 set. The transitions correspond to decrease of inter-layer distance correlating with the length of alcohol molecules, and change in their orientation from perpendicular to GO planes to layered parallel to GO (Type II transitions). These transitions are very different compared to BGO swelling transitions (Type I) found in smaller alcohols and related to insertion/de-insertion of additional layer of alcohol parallel to GO. Analysis of general trends in the whole set of 1-alcohols (C1 to C22) shows that the 1-alcohol chain length defines the type of swelling transition with Type I found for alcohols with C&lt;10 and Type II for C&gt;10. Originally included in thesis in manuscript form. This article also appears in: Advanced Materials Interfaces Editors' Choice.</p
    corecore