42 research outputs found
Cashew nuts (Anacardium occidentale L.) decrease visceral fat, yet augment glucose in dyslipidemic rats
The objective of this study was to evaluate the biological effects of roasted Cashew nuts consumption on biochemical and murinometric parameters in dyslipidemic rats receiving lipid supplementation. Young male rats were randomly assigned to three experimental groups (n = 10). The Control group (CONT) was treated with water, the Dyslipidemic group (DL) received a high fat content emulsion throughout the experiment, and the Dyslipidemic Cashew Nuts group (DLCN) received the same high fat content emulsion throughout the experiment, yet was treated with Cashew nuts. Body parameters, biochemical, hepatic and fecal fatty acid profiles were all evaluated. The levels of total cholesterol and triglycerides were higher in the DL and DLCN groups as compared to the control group. DLCN and CONT presented no difference in HDL levels. DLCN presented higher glycemia levels than the other groups. There was reduction of body fat in DLCN as compared to other groups, but with higher accumulations of liver fat. DLCN presented a reduction in saturated hepatic fatty acids of 20.8%, and an increase of 177% in relation to CONT; there was also a 21% in increase DL for Ï9 fatty acids in comparison to CONT. As for fecal fatty acids, there was a lower concentration of polysaturates in DLCN as compared to the other groups. The data showed that the consumption of Cashew nuts by the dyslipidemic animals treated with a hyperlipidic diet induced greater accumulations of liver fat and worsened glycemic levels, despite having reduced visceral fats and increased fecal fat excretion.info:eu-repo/semantics/publishedVersio
A Systems Biology Approach Identifies Molecular Networks Defining Skeletal Muscle Abnormalities in Chronic Obstructive Pulmonary Disease
Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory process of the lung inducing persistent airflow limitation. Extensive systemic effects, such as skeletal muscle dysfunction, often characterize these patients and severely limit life expectancy. Despite considerable research efforts, the molecular basis of muscle degeneration in COPD is still a matter of intense debate. In this study, we have applied a network biology approach to model the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. Our model shows that failure to co-ordinately activate expression of several tissue remodelling and bioenergetics pathways is a specific landmark of COPD diseased muscles. Our findings also suggest that this phenomenon may be linked to an abnormal expression of a number of histone modifiers, which we discovered correlate with oxygen utilization. These observations raised the interesting possibility that cell hypoxia may be a key factor driving skeletal muscle degeneration in COPD patients