5,048 research outputs found

    Tensor decomposition with generalized lasso penalties

    Full text link
    We present an approach for penalized tensor decomposition (PTD) that estimates smoothly varying latent factors in multi-way data. This generalizes existing work on sparse tensor decomposition and penalized matrix decompositions, in a manner parallel to the generalized lasso for regression and smoothing problems. Our approach presents many nontrivial challenges at the intersection of modeling and computation, which are studied in detail. An efficient coordinate-wise optimization algorithm for (PTD) is presented, and its convergence properties are characterized. The method is applied both to simulated data and real data on flu hospitalizations in Texas. These results show that our penalized tensor decomposition can offer major improvements on existing methods for analyzing multi-way data that exhibit smooth spatial or temporal features

    Priors for Random Count Matrices Derived from a Family of Negative Binomial Processes

    Full text link
    We define a family of probability distributions for random count matrices with a potentially unbounded number of rows and columns. The three distributions we consider are derived from the gamma-Poisson, gamma-negative binomial, and beta-negative binomial processes. Because the models lead to closed-form Gibbs sampling update equations, they are natural candidates for nonparametric Bayesian priors over count matrices. A key aspect of our analysis is the recognition that, although the random count matrices within the family are defined by a row-wise construction, their columns can be shown to be i.i.d. This fact is used to derive explicit formulas for drawing all the columns at once. Moreover, by analyzing these matrices' combinatorial structure, we describe how to sequentially construct a column-i.i.d. random count matrix one row at a time, and derive the predictive distribution of a new row count vector with previously unseen features. We describe the similarities and differences between the three priors, and argue that the greater flexibility of the gamma- and beta- negative binomial processes, especially their ability to model over-dispersed, heavy-tailed count data, makes these well suited to a wide variety of real-world applications. As an example of our framework, we construct a naive-Bayes text classifier to categorize a count vector to one of several existing random count matrices of different categories. The classifier supports an unbounded number of features, and unlike most existing methods, it does not require a predefined finite vocabulary to be shared by all the categories, and needs neither feature selection nor parameter tuning. Both the gamma- and beta- negative binomial processes are shown to significantly outperform the gamma-Poisson process for document categorization, with comparable performance to other state-of-the-art supervised text classification algorithms.Comment: To appear in Journal of the American Statistical Association (Theory and Methods). 31 pages + 11 page supplement, 5 figure

    The rigged Hilbert space approach to the Lippmann-Schwinger equation. Part I

    Full text link
    We exemplify the way the rigged Hilbert space deals with the Lippmann-Schwinger equation by way of the spherical shell potential. We explicitly construct the Lippmann-Schwinger bras and kets along with their energy representation, their time evolution and the rigged Hilbert spaces to which they belong. It will be concluded that the natural setting for the solutions of the Lippmann-Schwinger equation--and therefore for scattering theory--is the rigged Hilbert space rather than just the Hilbert space.Comment: 34 pages, 1 figur

    Short turn-around intercontinental clock synchronization using very-long-baseline interferometry

    Get PDF
    During the past year work was accomplished to bring into regular operation a VLBI system for making intercontinental clock comparisons with a turn around of a few days from the time of data taking. Earlier VLBI systems required several weeks to produce results. The present system, which is not yet complete, incorporates a number of refinements not available in earlier systems, such as dual frequency inosopheric delay cancellation and wider synthesized bandwidths with instrumental phase calibration

    Study on k-shortest paths with behavioral impedance domain from the intermodal public transportation system perspective

    Get PDF
    Behavioral impedance domain consists of a theory on route planning for pedestrians, within which constraint management is considered. The goal of this paper is to present the k-shortest path model using the behavioral impedance approach. After the mathematical model building, optimization problem and resolution problem by a behavioral impedance algorithm, it is discussed how behavioral impedance cost function is embedded in the k-shortest path model. From the pedestrian's route planning perspective, the behavioral impedance cost function could be used to calculate best subjective paths in the objective way.Postprint (published version

    The Importance of Boundary Conditions in Quantum Mechanics

    Get PDF
    We discuss the role of boundary conditions in determining the physical content of the solutions of the Schrodinger equation. We study the standing-wave, the ``in,'' the ``out,'' and the purely outgoing boundary conditions. As well, we rephrase Feynman's +iϵ+i \epsilon prescription as a time-asymmetric, causal boundary condition, and discuss the connection of Feynman's +iϵ+i \epsilon prescription with the arrow of time of Quantum Electrodynamics. A parallel of this arrow of time with that of Classical Electrodynamics is made. We conclude that in general, the time evolution of a closed quantum system has indeed an arrow of time built into the propagators.Comment: Contribution to the proceedings of the ICTP conference "Irreversible Quantum Dynamics," Trieste, Italy, July 200

    Development of the Cassini Ground Data System in a multimission environment

    Get PDF
    As baselined, the Cassini Ground Data System (GDS) will be composed of Project specific and multimission elements. The former will be developed by the Cassini Project and the latter by two JPL institutional organizations, the Telecommunications and Data Acquisition Office (TDA) and the Multimission Operations Systems Office (MOSO). The GDS will be developed in three principal phases: Spacecraft Test, Launch-cruise, and Science Tour, with a significant part of the development deferred until the post-launch period. New capabilities are being introduced that are key to the achievement of more cost effective operations. Successful development of the system will require careful planning and will involve participation of diverse disciplines. This paper introduces the Cassini Project from the Ground Data System perspective and discusses development approaches expected to produce systems which meet functional and performance requirements and which will be delivered on schedule and within budget

    On the inconsistency of the Bohm-Gadella theory with quantum mechanics

    Get PDF
    The Bohm-Gadella theory, sometimes referred to as the Time Asymmetric Quantum Theory of Scattering and Decay, is based on the Hardy axiom. The Hardy axiom asserts that the solutions of the Lippmann-Schwinger equation are functionals over spaces of Hardy functions. The preparation-registration arrow of time provides the physical justification for the Hardy axiom. In this paper, it is shown that the Hardy axiom is incorrect, because the solutions of the Lippmann-Schwinger equation do not act on spaces of Hardy functions. It is also shown that the derivation of the preparation-registration arrow of time is flawed. Thus, Hardy functions neither appear when we solve the Lippmann-Schwinger equation nor they should appear. It is also shown that the Bohm-Gadella theory does not rest on the same physical principles as quantum mechanics, and that it does not solve any problem that quantum mechanics cannot solve. The Bohm-Gadella theory must therefore be abandoned.Comment: 16 page
    • …
    corecore