40 research outputs found

    Suzaku observations of the Hydra A cluster out to the virial radius

    Full text link
    We report Suzaku observations of the northern half of the Hydra A cluster out to ~1.4 Mpc, reaching the virial radius. This is the first Suzaku observations of a medium-size (kT ~3 keV) cluster out to the virial radius. Two observations were conducted, north-west and north-east offsets, which continue in a filament direction and a void direction of the large-scale structure of the Universe, respectively. The X-ray emission and distribution of galaxies elongate in the filament direction. The temperature profiles in the two directions are mostly consistent with each other within the error bars and drop to 1.5 keV at 1.5 r_500. As observed by Suzaku in hot clusters, the entropy profile becomes flatter beyond r_500, in disagreement with the r^1.1 relationship that is expected from accretion shock heating models. When scaled with the average intracluster medium (ICM) temperature, the entropy profiles of clusters observed with Suzaku are universal and do not depend on system mass. The hydrostatic mass values in the void and filament directions are in good agreement, and the Navarro, Frenk, and White universal mass profile represents the hydrostatic mass distribution up to ~ 2 r_500. Beyond r_500, the ratio of gas mass to hydrostatic mass exceeds the result of the Wilkinson microwave anisotropy probe, and at r_100, these ratios in the filament and void directions reach 0.4 and 0.3, respectively. We discuss possible deviations from hydrostatic equilibrium at cluster outskirts. We derived radial profiles of the gasmass- to-light ratio and iron-mass-to-light ratio out to the virial radius. Within r_500, the iron-mass-to-light ratio of the Hydra A cluster was compared with those in other clusters observed with Suzaku.Comment: 16 pages, 15 figures; Accepted for publication in PAS

    Suzaku and Chandra observations of the galaxy cluster RXC J1053.7+5453 with a radio relic

    Full text link
    We present the results of Suzaku and Chandra observations of the galaxy cluster RXC J1053.7+5453 (z=0.0704z=0.0704), which contains a radio relic. The radio relic is located at the distance of 540\sim 540 kpc from the X-ray peak toward the west. We measured the temperature of this cluster for the first time. The resultant temperature in the center is 1.3 \sim 1.3 keV, which is lower than the value expected from the X-ray luminosity - temperature and the velocity dispersion - temperature relation. Though we did not find a significant temperature jump at the outer edge of the relic, our results suggest that the temperature decreases outward across the relic. Assuming the existence of the shock at the relic, its Mach number becomes M1.4M \simeq 1.4 . A possible spatial variation of Mach number along the relic is suggested. Additionally, a sharp surface brightness edge is found at the distance of 160\sim 160 kpc from the X-ray peak toward the west in the Chandra image. We performed X-ray spectral and surface brightness analyses around the edge with Suzaku and Chandra data, respectively. The obtained surface brightness and temperature profiles suggest that this edge is not a shock but likely a cold front. Alternatively, it cannot be ruled out that thermal pressure is really discontinuous across the edge. In this case, if the pressure across the surface brightness edge is in equilibrium, other forms of pressure sources, such as cosmic-rays, are necessary. We searched for the non-thermal inverse Compton component in the relic region. Assuming the photon index Γ=2.0 \Gamma = 2.0, the resultant upper limit of the flux is 1.9×1014erg s1 cm21.9 \times 10^{-14} {\rm erg \ s^{-1} \ cm^{-2}} for 4.50×103 deg24.50 \times 10^{-3} {\rm \ deg^{2}} area in the 0.3-10 keV band, which implies that the lower limit of magnetic field strength becomes $ 0.7 {\rm \ \mu G}$.Comment: 13page, 8 figures, accepted for publication in PASJ. arXiv admin note: text overlap with arXiv:1508.0584

    Suzaku Observation of HCG 62: Temperature, Abundance, and Extended Hard X-ray Emission Profiles

    Full text link
    We present results of 120 ks observation of a compact group of galaxies HCG~62 (z=0.0145z=0.0145) with Suzaku XIS and HXD-PIN\@. The XIS spectra for four annular regions were fitted with two temperature {\it vapec} model with variable abundance, combined with the foreground Galactic component. The Galactic component was constrained to have a common surface brightness among the four annuli, and two temperature {\it apec} model was preferred to single temperature model. We confirmed the multi-temperature nature of the intra-group medium reported with Chandra and XMM-Newton, with a doughnut-like high temperature ring at radii 3.3--6.5' in a hardness image. We found Mg, Si, S, and Fe abundances to be fairly robust. We examined the possible ``high-abundance arc'' at 2\sim 2' southwest from the center, however Suzaku data did not confirm it. We suspect that it is a misidentification of an excess hot component in this region as the Fe line. Careful background study showed no positive detection of the extended hard X-rays previously reported with ASCA, in 5--12 keV with XIS and 12--40 keV with HXD-PIN, although our upper limit did not exclude the ASCA result. There is an indication that the X-ray intensity in r<3.3r<3.3' region is 70±1970\pm 19% higher than the nominal CXB level (5--12 keV), and Chandra and Suzaku data suggest that most of this excess could be due to concentration of hard X-ray sources with an average photon index of Γ=1.38±0.06\Gamma=1.38\pm 0.06. Cumulative mass of O, Fe and Mg in the group gas and the metal mass-to-light ratio were derived and compared with those in other groups. Possible role of AGN or galaxy mergers in this group is also discussed.Comment: 29 pages with 9 figures, accepted for publication in PASJ Vol 60, second Suzaku special issu

    Suzaku Observations of the Centaurus Cluster: Absence of Bulk Motions in the Intracluster Medium

    Get PDF
    The Centaurus cluster (z=0.0104) was observed with the X-ray Imaging Spectrometer (XIS) onboard the Suzaku X-ray satellite in three pointings, one centered on the cluster core and the other two offset by +-8' in declination. To search for possible bulk motions of the intracluster medium, the central energy of He-like Fe-K line (at a rest-frame energy of 6.7 keV) was examined to look for a positional dependence. Over spatial scales of 50 kpc to 140 kpc around the cluster core, the central line energy was found to be constant within the calibration error of 15 eV. The 90% upper limit on the line-of-sight velocity difference is |Delta_v|< 1400 km/s, giving a tighter constraint than previous measurements. The significant velocity gradients inferred from a previous Chandra study were not detected between two pairs of rectangular regions near the cluster core. These results suggest that the bulk velocity does not largely exceed the thermal velocity of the gas in the central region of the Centaurus cluster. The mean redshift of the intracluster medium was determined to be 0.0097, in agreement with the optical redshift of the cluster within the calibration uncertainty. Implications of the present results for the estimation of the cluster mass are briefly discussed.Comment: 9 pages, 4 figures. Accepted for publication in PASJ. Version with high-quality color figures at http://cosmic.riken.jp/ota/publications/index.htm

    A Galaxy Merger Scenario for the NGC 1550 Galaxy from Metal Distributions in the X-ray Emitting Plasma

    Full text link
    The elliptical galaxy NGC 1550 at a redshift of z=0.01239z=0.01239, identified with an extended X-ray source RX J0419+0225, was observed with {\it XMM-Newton} for 31 ks. From the X-ray data and archival near infra-red data of Two Micron All Sky survay, we derive the profiles of components constituting the NGC 1550 system; the gas mass, total mass, metal mass, and galaxy luminosity. The metals (oxygen, silicon, and iron) are extended to 200\sim 200 kpc from the center, wherein \sim 70% of the KK-band luminosity is carried by NGC 1550 itself. As first revealed with {\it ASCA}, the data reconfirms the presence of a dark halo, of which the mass (1.6×1013M1.6 \times 10^{13} M_{\odot}) is typical of a galaxy group rather than of a single galaxy. Within 210 kpc, the KK-band mass-to-light ratio reaches 75M/L75 M_{\odot}/L_{\odot}, which is comparable to those of clusters of galaxies. The iron-mass-to-light ratio profile (silicon- and oxygen mass-to-light ratio profiles as well) exhibits about two orders of magnitude decrease toward the center. Further studies comparing mass densities of metals with those of the other cluster components reveal that the iron (as well as silicon) in the ICM traces very well the total gravitating mass, whereas the stellar component is significantly more concentrated to within several tens kpc of the NGC 1550 nucleus. Thus, in the central region, the amount of metals is significantly depleted for the luminous galaxy light. Among a few possible explanations of this effect, the most likely scenario is that galaxies in this system were initially much more extended than today, and gradually fell to the center and merged into NGC 1550.Comment: 31 pages, 10 figures, 2 table

    X-Ray Study of Temperature and Abundance Profiles of the Cluster of Galaxies Abell 1060 with Suzaku

    Full text link
    We carried out observations of the central and 20' east offset regions of the cluster of galaxies Abell 1060 with Suzaku. Spatially resolved X-ray spectral analysis has revealed temperature and abundance profiles of Abell 1060 out to 27' ~ 380; /h_70 kpc, which corresponded to ~ 0.25; r_180. Temperature decrease of the intra cluster medium from 3.4 keV at the center to 2.2 keV in the outskirt region are clearly observed. Abundances of Si, S and Fe also decrease by more than 50% from the center to the outer, while Mg shows fairly constant abundance distribution at ~ 0.7 solar within r < 17'. O shows lower abundance of ~ 0.3 solar in the central region (r~ 6'), and indicates a similar feature with Mg, however it is sensitive to the estimated contribution of the Galactic components of kT_1 ~ 0.15 keV and kT_2 ~ 0.7 keV in the outer annuli (r ~ 13'). Systematic effects due to the point spread function tails, contamination on the XIS filters, instrumental background, cosmic and/or Galactic X-ray background, and the assumed solar abundance tables are carefully examined. Results on temperature and abundances of Si, S, and Fe are consistent with those derived by XMM-Newton at r < 13'. Formation and metal enrichment process of the cluster are discussed based on the present results.Comment: 20 pages, 19 figures, accepted for publication in PAS

    The ASTRO-H X-ray Observatory

    Full text link
    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray
    corecore