9 research outputs found

    Advanced Chalcogen Cathode Materials for Lithium-Ion Batteries

    No full text
    As on today the main power sources of lithium-ion batteries (LIBs) research developments gradually approach their theoretical limits in terms of energy density. Therefore, an alternative next-generation of power sources is required with high-energy densities, low cost, and environmental safety. Alternatively, the chalcogen materials such as sulfur, selenium, and tellurium (SSTs) are used due to their excellent theoretical capacities, low cost, and no toxicity. However, there will be some challenges to overcome such as sluggish reaction of kinetics, inferior cycling stability, poor conductivity of S, and “shuttle effect” of lithium polysulfides in the Li-S batteries. Hence, several strategies have been discussed in this chapter. First, the Al-SSTs systems with more advanced techniques are systematically investigated. An advanced separators or electrolytes are prepared with the nano-metal sulfide materials to reduce the resistance in interfaces. Layered structured cathodes made with chalcogen ligand (sulfur), polysulfide species, selenium- and tellurium-substituted polysulfides, Se1-xSx uniformly dispersed in 3D porous carbon matrix were discussed. The construction of nanoreactors for high-energy density batteries are discussed. Finally, the detailed classification of flexible sulfur, selenium, and tellurium cathodes based on carbonaceous (e.g., carbon nanotubes, graphene, and carbonized polymers) and their composite (polymers and inorganics) materials are explained

    Techniques of Machine Learning for the Purpose of Predicting Diabetes Risk in PIMA Indians

    No full text
    Chronic Metabolic Syndrome Diabetes is often called a “silent killer” due to how little symptoms appear early on. High blood sugar occurs in people with diabetes because their bodies have a hard time maintaining normal glucose levels. Care for a recurrent sickness would be permanent. The two most common forms of diabetes are type 1 and type 2. A better prognosis can help reduce the high risk of developing diabetes. In order to better predict the likelihood that a PIMA Indian may develop diabetes, this study will use a machine learning-based algorithm. The demographic and health records of 768 PIMA Indians were used in the analysis. Standardisation, feature selection, missing value filling, and outlier rejection were all parts of the data preparation process. Machine learning techniques such as logistic regression, decision trees, random forests, the KNN model, the AdaBoost classifier, the Naive Bayes model, and the XGBoost model were used in the study. Accuracy, precision, recall, and F1 score were the only metrics utilised to assess the models' efficacy. The results demonstrate that. The results of this study reveal that diabetes risk may be reliably predicted using machine learning-based models, which has important implications for the early detection and prevention of this illness among PIMA Indians

    Classification and diagnostic prediction of breast cancer metastasis on clinical data using machine learning algorithms

    No full text
    Abstract Metastatic Breast Cancer (MBC) is one of the primary causes of cancer-related deaths in women. Despite several limitations, histopathological information about the malignancy is used for the classification of cancer. The objective of our study is to develop a non-invasive breast cancer classification system for the diagnosis of cancer metastases. The anaconda—Jupyter notebook is used to develop various python programming modules for text mining, data processing, and Machine Learning (ML) methods. Utilizing classification model cross-validation criteria, including accuracy, AUC, and ROC, the prediction performance of the ML models is assessed. Welch Unpaired t-test was used to ascertain the statistical significance of the datasets. Text mining framework from the Electronic Medical Records (EMR) made it easier to separate the blood profile data and identify MBC patients. Monocytes revealed a noticeable mean difference between MBC patients as compared to healthy individuals. The accuracy of ML models was dramatically improved by removing outliers from the blood profile data. A Decision Tree (DT) classifier displayed an accuracy of 83% with an AUC of 0.87. Next, we deployed DT classifiers using Flask to create a web application for robust diagnosis of MBC patients. Taken together, we conclude that ML models based on blood profile data may assist physicians in selecting intensive-care MBC patients to enhance the overall survival outcome

    International Nosocomial Infection Control Consortiu (INICC) report, data summary of 43 countries for 2007-2012. Device-associated module

    No full text
    We report the results of an International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2007-December 2012 in 503 intensive care units (ICUs) in Latin America, Asia, Africa, and Europe. During the 6-year study using the Centers for Disease Control and Prevention's (CDC) U.S. National Healthcare Safety Network (NHSN) definitions for device-associated health care–associated infection (DA-HAI), we collected prospective data from 605,310 patients hospitalized in the INICC's ICUs for an aggregate of 3,338,396 days. Although device utilization in the INICC's ICUs was similar to that reported from ICUs in the U.S. in the CDC's NHSN, rates of device-associated nosocomial infection were higher in the ICUs of the INICC hospitals: the pooled rate of central line–associated bloodstream infection in the INICC's ICUs, 4.9 per 1,000 central line days, is nearly 5-fold higher than the 0.9 per 1,000 central line days reported from comparable U.S. ICUs. The overall rate of ventilator-associated pneumonia was also higher (16.8 vs 1.1 per 1,000 ventilator days) as was the rate of catheter-associated urinary tract infection (5.5 vs 1.3 per 1,000 catheter days). Frequencies of resistance of Pseudomonas isolates to amikacin (42.8% vs 10%) and imipenem (42.4% vs 26.1%) and Klebsiella pneumoniae isolates to ceftazidime (71.2% vs 28.8%) and imipenem (19.6% vs 12.8%) were also higher in the INICC's ICUs compared with the ICUs of the CDC's NHSN
    corecore