609 research outputs found
Band gaps in the relaxed linear micromorphic continuum
In this note we show that the relaxed linear micromorphic model recently
proposed by the authors can be suitably used to describe the presence of
band-gaps in metamaterials with microstructures in which strong contrasts of
the mechanical properties are present (e.g. phononic crystals and lattice
structures). This relaxed micromorphic model only has 6 constitutive parameters
instead of 18 parameters needed in Mindlin- and Eringen-type classical
micromorphic models. We show that the onset of band-gaps is related to a unique
constitutive parameter, the Cosserat couple modulus which starts to
account for band-gaps when reaching a suitable threshold value. The limited
number of parameters of our model, as well as the specific effect of some of
them on wave propagation can be seen as an important step towards indirect
measurement campaigns
A Game Theory Proof of Optimal Colorings Resilience to Strong Deviations
This paper provides a formal proof of the conjecture stating that optimal colorings in max k-cut games over unweighted and undirected graphs do not allow the formation of any strongly divergent coalition, i.e., a subset of nodes able to increase their own payoffs simultaneously. The result is obtained by means of a new method grounded on game theory, which consists in splitting the nodes of the graph into three subsets: the coalition itself, the coalition boundary and the nodes without relationship with the coalition. Moreover, we find additional results concerning the properties of optimal colorings
Relaxed micromorphic broadband scattering for finite-size meta-structures - a detailed development
The conception of new metamaterials showing unorthodox behaviors with respect to elastic wavepropagation has become possible in recent years thanks to powerful dynamical homogenization techniques. Such methods effectively allow to describe the behavior of an infinite medium generated by periodically architectured base materials. Nevertheless, when it comes to the study of the scattering properties of finite-sized structures, dealing with the correct boundary conditions at the macroscopicscale becomes challenging. In this paper, we show how finite-domain boundary value problems canbe set-up in the framework of enriched continuum mechanics (relaxed micromorphic model) by imposing continuity of macroscopic displacement and of generalized traction when non-local effects areneglected.The case of a metamaterial slab of finite width is presented, its scattering properties are studied viaa semi-analytical solution of the relaxed micromorphic model and compared to numerical simulationsencoding all details of the selected microstructure. The reflection coefficient obtained via the twomethods is presented as a function of the frequency and of the direction of propagation of the incidentwave. We find excellent agreement for a large range of frequencies going from the long-wave limitto frequencies beyond the first band-gap and for angles of incidence ranging from normal to nearparallel incidence. The case of a semi-infinite metamaterial is also presented and is seen to be areliable measure of the average behavior of the finite metastructure. A tremendous gain in termsof computational time is obtained when using the relaxed micromorphic model for the study of theconsidered metastructure
Fatal systemic toxoplasmosis in a 3-month-old young tibetan goat (Capra hircus)
Background: Toxoplasmosis is one of the most common parasitic infections in both humans and animals. It is a frequent cause of abortion and stillbirth in intermediate hosts, especially sheep and goats but rarely causes fatal clinical form in adult animals. Case presentation: In contrast, the study reports an unusual fatal case of toxoplasmosis in a young goat naturally infected with type II strain of Toxoplasma gondii. A three-month-old female goat was presented with dyspnea and died few days later. Grossly, lungs were firm, edematous and mottled with disseminated whitish areas. Generalized lymphadenopathy was found. The histopathological examination showed necrotic interstitial bronchopneumonia and necrotizing lymphadenitis with intralesional free and clustered within macrophages tachyzoites of T. gondii. DNA extracted from lungs and lymph nodes was positive for T. gondii by a fast qPCR. PCR-RFLP analysis and sequencing of GRA6 gene showed that the isolated strains belonged to type II genotype. Conclusions: This is an unusual report of acute systemic toxoplasmosis caused by the type II strain of T. gondii with a fatal outcome in a young goat
Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform
Important insights into aging have been generated with the genetically tractable and short-lived budding yeast. However, it is still impossible today to continuously track cells by high-resolution microscopic imaging (e.g., fluorescent imaging) throughout their entire lifespan. Instead, the field still needs to rely on a 50-y-old laborious and time-consuming method to assess the lifespan of yeast cells and to isolate differentially aged cells for microscopic snapshots via manual dissection of daughter cells from the larger mother cell. Here, we are unique in achieving continuous and high-resolution microscopic imaging of the entire replicative lifespan of single yeast cells. Our microfluidic dissection platform features an optically prealigned single focal plane and an integrated array of soft elastomer-based micropads, used together to allow for trapping of mother cells, removal of daughter cells, monitoring gradual changes in aging, and unprecedented microscopic imaging of the whole aging process. Using the platform, we found remarkable age-associated changes in phenotypes (e.g., that cells can show strikingly differential cell and vacuole morphologies at the moment of their deaths), indicating substantial heterogeneity in cell aging and death. We envision the microfluidic dissection platform to become a major tool in aging research.
The role of repetitive transcranial magnetic stimulation (rTMS) in the treatment of behavioral addictions: Two case reports and review of the literature
none9noBackground
Several behaviors, besides consumption of psychoactive substances, produce short-term reward that may lead to persistent aberrant behavior despite adverse consequences. Growing evidence suggests that these behaviors warrant consideration as nonsubstance or “behavioral” addictions, such as pathological gambling, internet gaming disorder and internet addiction.
Case presentation
Here, we report two cases of behavioral addictions (BA), compulsive sexual behavior disorder for online porn use and internet gaming disorder. A 57-years-old male referred a loss of control over his online pornography use, started 15 years before, while a 21-years-old male university student reported an excessive online gaming activity undermining his academic productivity and social life. Both patients underwent a high-frequency repetitive transcranial magnetic stimulation (rTMS) protocol over the left dorsolateral prefrontal cortex (l-DLPFC) in a multidisciplinary therapeutic setting. A decrease of addictive symptoms and an improvement of executive control were observed in both cases.
Discussion
Starting from these clinical observations, we provide a systematic review of the literature suggesting that BAs share similar neurobiological mechanisms to those underlying substance use disorders (SUD). Moreover, we discuss whether neurocircuit-based interventions, such as rTMS, might represent a potential effective treatment for BAs.openCuppone, D; Gómez Pérez, L J; Cardullo, S; Cellini, N; Sarlo, M; Soldatesca, S; Chindamo, S; Madeo, G; Gallimberti, LCuppone, D; Gómez Pérez, L J; Cardullo, S; Cellini, N; Sarlo, M; Soldatesca, S; Chindamo, S; Madeo, G; Gallimberti,
Guidelines and recommendations on yeast cell death nomenclature
Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research
- …