2,462 research outputs found

    Multi-band quantum ratchets

    Full text link
    We investigate directed motion in non-adiabatically rocked ratchet systems sustaining few bands below the barrier. Upon restricting the dynamics to the lowest M bands, the total system-plus-bath Hamiltonian is mapped onto a discrete tight-binding model containing all the information both on the intra- and inter-well tunneling motion. A closed form for the current in the incoherent tunneling regime is obtained. In effective single-band ratchets, no current rectification occurs. We apply our theory to describe rectification effects in vortex quantum ratchets devices. Current reversals upon variation of the ac-field amplitude or frequency are predicted.Comment: Accepted for publication in Physical Review Letter

    Redshifts in the Southern Abell Redshift Survey Clusters. I. The Data

    Full text link
    The Southern Abell Redshift Survey contains 39 clusters of galaxies with redshifts in the range 0.0 < z < 0.31 and a median redshift depth of z = 0.0845. SARS covers the region 0 21h (while avoiding the LMC and SMC) with b > 40. Cluster locations were chosen from the Abell and Abell-Corwin-Olowin catalogs while galaxy positions were selected from the Automatic Plate Measuring Facility galaxy catalog with extinction-corrected magnitudes in the range 15 <= b_j < 19. SARS utilized the Las Campanas 2.5 m duPont telescope, observing either 65 or 128 objects concurrently over a 1.5 sq deg field. New redshifts for 3440 galaxies are reported in the fields of these 39 clusters of galaxies.Comment: 20 pages, 5 figures, accepted for publication in the Astronomical Journal, Table 2 can be downloaded in its entirety from http://trotsky.arc.nasa.gov/~mway/SARS1/sars1-table2.cs

    The local space density of dwarf galaxies

    Get PDF
    We estimate the luminosity function of field galaxies over a range of ten magnitudes (-22 < M_{B_J} < -12 for H_0 = 100 km/s/Mpc) by counting the number of faint APM galaxies around Stromlo-APM redshift survey galaxies at known distance. The faint end of the luminosity function rises steeply at M_{B_J} \approx -15, implying that the space density of dwarf galaxies is at least two times larger than predicted by a Schechter function with flat faint-end slope. Such a high abundance of dwarf galaxies at low redshift can help explain the observed number counts and redshift distributions of faint galaxies without invoking exotic models for galaxy evolution.Comment: 20 pages, 5 included postscript figures, uses AAS LaTex macros. Accepted for publication in the Astrophysical Journal. Two figures and associated discussion added; results and conclusions unchange

    The Galaxy Angular Correlation Functions and Power Spectrum from the Two Micron All Sky Survey

    Get PDF
    We calculate the angular correlation function of galaxies in the Two Micron All Sky Survey. We minimize the possible contamination by stars, dust, seeing and sky brightness by studying their cross correlation with galaxy density, and limiting the galaxy sample accordingly. We measure the correlation function at scales between 1-18 arcdegs using a half million galaxies. We find a best fit power law to the correlation function has a slope of 0.76 and an amplitude of 0.11. However, there are statistically significant oscillations around this power law. The largest oscillation occurs at about 0.8 degrees, corresponding to 2.8 h^{-1} Mpc at the median redshift of our survey, as expected in halo occupation distribution descriptions of galaxy clustering. We invert the angular correlation function using Singular Value Decomposition to measure the three-dimensional power spectrum and find that it too is in good agreement with previous measurements. A dip seen in the power spectrum at small wavenumber k is statistically consistent with CDM-type power spectra. A fit of CDM-type power spectra to k < 0.2 h Mpc^{-1} give constraints of \Gamma_{eff}=0.116 and \sigma_8=0.96. This suggest a K_s-band linear bias of 1.1+/-0.2. This \Gamma_{eff} is different from the WMAP CMB derived value. On small scales the power-law shape of our power spectrum is shallower than that derived for the SDSS. These facts together imply a biasing of these different galaxies that might be nonlinear, that might be either waveband or luminosity dependent, and that might have a nonlocal origin.Comment: 14 pages, 20 figures, to be published in ApJ January 20th, revision included two new figures, version with high resolution figures can be found here http::ww

    Star Formation, Metallicity and Dust Properties Derived from the SAPM Galaxy Survey Spectra

    Full text link
    We have derived star formation rates (SFRs), gas-phase oxygen abundances and effective dust absorption optical depths for a sample of galaxies drawn from the Stromlo-APM redshift survey using the new Charlot and Longhetti (2001; CL01) models, which provide a physically consistent description of the effects of stars, gas and dust on the integrated spectra of galaxies. Our sample consists of 705 galaxies with measurements of the fluxes and equivalent widths of Halpha, [OII], and one or both of [NII] and [SII]. For a subset of the galaxies, 60 and 100 micron IRAS fluxes are available. We compare the star formation rates derived using the models with those derived using standard estimators based on the Halpha, the [OII] and the far-infrared luminosities of the galaxies. The CL01 SFR estimates agree well with those derived from the IRAS fluxes, but are typically a factor of ~3 higher than those derived from the Halpha or the [OII] fluxes, even after the usual mean attenuation correction of A_Halpha=1 mag is applied to the data. We show that the reason for this discrepancy is that the standard Halpha estimator neglects the absorption of ionizing photons by dust in HII regions and the contamination of Halpha emission by stellar absorption. We also use our sample to study variations in star formation and metallicity as a function of galaxy absolute bJ magnitude. For this sample, the star formation rate per unit bJ luminosity is independent of magnitude. The gas-phase oxygen abundance does increase with bJ luminosity, although the scatter in metallicity at fixed magnitude is large.Comment: 17 pages, 8 figures, accepted for publication in MNRA

    Large-scale structure and matter in the universe

    Full text link
    This paper summarizes the physical mechanisms that encode the type and quantity of cosmological matter in the properties of large-scale structure, and reviews the application of such tests to current datasets. The key lengths of the horizon size at matter-radiation equality and at last scattering determine the total matter density and its ratio to the relativistic density; acoustic oscillations can diagnose whether the matter is collisionless, and small-scale structure or its absence can limit the mass of any dark-matter relic particle. The most stringent constraints come from combining data on present-day galaxy clustering with data on CMB anisotropies. Such an analysis breaks the degeneracies inherent in either dataset alone, and proves that the universe is very close to flat. The matter content is accurately consistent with pure Cold Dark Matter, with about 25% of the critical density, and fluctuations that are scalar-only, adiabatic and scale-invariant. It is demonstrated that these conclusions cannot be evaded by adjusting either the equation of state of the vacuum, or the total relativistic density.Comment: 17 Pages. Review paper from the January 2003 Royal Society Discussion Meeting, "The search for dark matter and dark energy in the universe

    Radio Sources in the 2dF Galaxy Redshift Survey. I. Radio Source Populations

    Get PDF
    We present the first results from a study of the radio continuum properties of galaxies in the 2dF Galaxy Redshift Survey, based on thirty 2dF fields covering a total area of about 100 square degrees. About 1.5% of galaxies with b(J) < 19.4 mag are detected as radio continuum sources in the NRAO VLA Sky Survey (NVSS). Of these, roughly 40% are star-forming galaxies and 60% are active galaxies (mostly low-power radio galaxies and a few Seyferts). The combination of 2dFGRS and NVSS will eventually yield a homogeneous set of around 4000 radio-galaxy spectra, which will be a powerful tool for studying the distriibution and evolution of both AGN and starburst galaxies out to redshift z=0.3.Comment: 14 pages, 7 figures, accepted for publication in PAS

    The Apparent and Intrinsic Shape of the APM Galaxy Clusters

    Get PDF
    We estimate the distribution of intrinsic shapes of APM galaxy clusters from the distribution of their apparent shapes. We measure the projected cluster ellipticities using two alternative methods. The first method is based on moments of the discrete galaxy distribution while the second is based on moments of the smoothed galaxy distribution. We study the performance of both methods using Monte Carlo cluster simulations covering the range of APM cluster distances and including a random distribution of background galaxies. We find that the first method suffers from severe systematic biases, whereas the second is more reliable. After excluding clusters dominated by substructure and quantifying the systematic biases in our estimated shape parameters, we recover a corrected distribution of projected ellipticities. We use the non-parametric kernel method to estimate the smooth apparent ellipticity distribution, and numerically invert a set of integral equations to recover the corresponding distribution of intrinsic ellipticities under the assumption that the clusters are either oblate or prolate spheroids. The prolate spheroidal model fits the APM cluster data best.Comment: 8 pages, including 7 figures, accepted for publication in MNRA

    Probing dark energy with steerable wavelets through correlation of WMAP and NVSS local morphological measures

    Get PDF
    Using local morphological measures on the sphere defined through a steerable wavelet analysis, we examine the three-year WMAP and the NVSS data for correlation induced by the integrated Sachs-Wolfe (ISW) effect. The steerable wavelet constructed from the second derivative of a Gaussian allows one to define three local morphological measures, namely the signed-intensity, orientation and elongation of local features. Detections of correlation between the WMAP and NVSS data are made with each of these morphological measures. The most significant detection is obtained in the correlation of the signed-intensity of local features at a significance of 99.9%. By inspecting signed-intensity sky maps, it is possible for the first time to see the correlation between the WMAP and NVSS data by eye. Foreground contamination and instrumental systematics in the WMAP data are ruled out as the source of all significant detections of correlation. Our results provide new insight on the ISW effect by probing the morphological nature of the correlation induced between the cosmic microwave background and large scale structure of the Universe. Given the current constraints on the flatness of the Universe, our detection of the ISW effect again provides direct and independent evidence for dark energy. Moreover, this new morphological analysis may be used in future to help us to better understand the nature of dark energy.Comment: 12 pages, 10 figures, replaced to match version accepted by MNRA

    Extragalactic Foregrounds of the Cosmic Microwave Background: Prospects for the MAP Mission

    Get PDF
    (Abridged) While the major contribution to the Cosmic Microwave Background (CMB) anisotropies are the sought-after primordial fluctuations produced at the surface of last scattering, other effects produce secondary fluctuations at lower redshifts. Here, we study the extragalactic foregrounds of the CMB in the context of the upcoming MAP mission. We first survey the major extragalactic foregrounds and show that discrete sources, the Sunyaev-Zel'dovich (SZ) effect, and gravitational lensing are the most dominant ones for MAP. We then show that MAP will detect (>5 sigma) about 46 discrete sources and 10 SZ clusters directly with 94 GHz fluxes above 2 Jy. The mean SZ fluxes of fainter clusters can be probed by cross-correlating MAP with cluster positions extracted from existing catalogs. For instance, a MAP-XBACs cross-correlation will be sensitive to clusters with S(94GHz)>200mJy, and will thus provide a test of their virialization state and a measurement of their gas fraction. Finally, we consider probing the hot gas on supercluster scales by cross-correlating the CMB with galaxy catalogs. Assuming that galaxies trace the gas, we show that a cross-correlation between MAP and the APM catalog should yield a marginal detection, or at least a four-fold improvement on the COBE upper limits for the rms Compton y-parameter.Comment: 27 LaTeX pages, including 5 ps figures and 2 tables. To appear in ApJ. Minor revisions to match accepted version. Color figures and further links available at http://www.astro.princeton.edu/~refreg
    corecore