12 research outputs found

    Типологія синтаксичних конструкцій в німецькій та українській мовах

    Get PDF
    Німецька та українська мови є односистемними мовами: обидві належать до індоєвропейської мовної сім’ї. Спільні корені та тривалий період ізольованого розвитку, вказують на те, що вказані мови мають характеристики подібності та відмінності в своій внутрішній будові. Німецька та українська належать до синтетичного типу флективних мов. Це означає, що граматичне значення слів у них виражається, здебільшого, за допомогою системи флексій і реалізується в межах одного графічного слова. Але флективна система німецької мови бідніша, ніж у слов’янських мовах.Немецкий и украинский языки являются односистемными языками: оба принадлежат к индоевропейской языковой семье. Общие корни и длительный период изолированного развития, указывают на то, что указанные языки имеют характеристики сходства и различия в своем внутреннем строении. Немецкий и украинский принадлежат к синтетическому типу флективных языков. Это означает, что грамматическое значение слов в них выражается, в основном, с помощью системы флексий и реализуется в пределах одного графического слова. Но флективная система немецкого языка беднее, чем в славянских языках.German and Ukrainian are single-system languages: both belong to the Indo-European language family. Common roots and a long period of isolated development, indicate that these languages ​​have characteristics of similarity and differences in their internal structure. German and Ukrainian belong to the synthetic type of inflectional languages. This means that the grammatical meaning of words in them is expressed, mainly, with the help of a system of inflexions and is realized within a single graphic word. But the inflectional system of the German language is poorer than in the Slavic languages

    Mitochondrial Diabetes in Children: Seek and You Will Find It

    Get PDF
    Maternally Inherited Diabetes and Deafness (MIDD) is a rare form of diabetes due to defects in mitochondrial DNA (mtDNA). 3243 A>G is the mutation most frequently associated with this condition, but other mtDNA variants have been linked with a diabetic phenotype suggestive of MIDD. From 1989 to 2009, we clinically diagnosed mitochondrial diabetes in 11 diabetic children. Diagnosis was based on the presence of one or more of the following criteria: 1) maculopathy; 2) hearing impairment; 3) maternal heritability of diabetes/impaired fasting glucose and/or hearing impairment and/or maculopathy in three consecutive generations (or in two generations if 2 or 3 members of a family were affected). We sequenced the mtDNA in the 11 probands, in their mothers and in 80 controls. We identified 33 diabetes-suspected mutations, 1/33 was 3243A>G. Most patients (91%) and their mothers had mutations in complex I and/or IV of the respiratory chain. We measured the activity of these two enzymes and found that they were less active in mutated patients and their mothers than in the healthy control pool. The prevalence of hearing loss (36% vs 75–98%) and macular dystrophy (54% vs 86%) was lower in our mitochondrial diabetic adolescents than reported in adults. Moreover, we found a hitherto unknown association between mitochondrial diabetes and celiac disease. In conclusion, mitochondrial diabetes should be considered a complex syndrome with several phenotypic variants. Moreover, deafness is not an essential component of the disease in children. The whole mtDNA should be screened because the 3243A>G variant is not as frequent in children as in adults. In fact, 91% of our patients were mutated in the complex I and/or IV genes. The enzymatic assay may be a useful tool with which to confirm the pathogenic significance of detected variants

    miRNA and Protein Expression Profiles of Visceral Adipose Tissue Reveal miR-141/YWHAG and miR-520e/RAB11A as Two Potential miRNA/Protein Target Pairs Associated with Severe Obesity

    No full text
    Adipose tissues show selective gene expression patterns, to whom microRNAs (miRNAs) may contribute. We evaluated in visceral adipose tissue (VAT) from obese and nonobese females, both miRNA and protein expression profiles, to identify miRNA/protein target pairs associated with obesity (metabolic pathways miRNA-deregulated during obesity). Obese and nonobese females [BMI 42.2 ± 1.6 and 23.7 ± 1.2 kg/m2 (mean ± SEM), respectively] were enrolled in this study. Notably, most miRNAs were downexpressed in obese tissues, whereas most of the proteins from the investigated spots were up-expressed. Bioinformatics integration of miRNA expression and proteomic data highlighted two potential miRNA/protein target pairs: miR- 141/YWHAG (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, gamma polypeptide) and miR-520e/RAB11A (Ras-related protein RAB-11A); the functional interaction between these miRNAs and their target sequences on the corresponding mRNAs was confirmed by luciferase assays. Both RAB11A and YWHAG proteins are involved in glucose homeostasis; YWHAG is also involved in lipid metabolism. Hence, the identified miRNA/protein target pairs are potential players in the obese phenotype

    Haplogroup T is an obesity risk factor: mitochondrial DNA haplotyping in a morbid obese population from southern Italy. Biomed Res Int 2013: 631082

    No full text
    Mitochondrial DNA (mtDNA) haplogroups have been associated with the expression of mitochondrial-related diseases and with metabolic alterations, but their role has not yet been investigated in morbid obese Caucasian subjects. Therefore, we investigated the association between mitochondrial haplogroups and morbid obesity in patients from southern Italy. The mtDNA D-loop of morbid obese patients ( = 500; BMI > 40 kg/m 2 ) and controls ( = 216; BMI < 25 kg/m 2 ) was sequenced to determine the mtDNA haplogroups. The T and J haplogroup frequencies were higher and lower, respectively, in obese subjects than in controls. Women bearing haplogroup T or J had twice or half the risk of obesity. Binomial logistic regression analysis showed that haplogroup T and systolic blood pressure are risk factors for a high degree of morbid obesity, namely, BMI > 45 kg/m 2 and in fact together account for 8% of the BMI. In conclusion, our finding that haplogroup T increases the risk of obesity by about two-fold, suggests that, besides nuclear genome variations and environmental factors, the T haplogroup plays a role in morbid obesity in our study population from southern Italy

    Changes in the MicroRNA Profile Observed in the Subcutaneous Adipose Tissue of Obese Patients after Laparoscopic Adjustable Gastric Banding

    Get PDF
    Background. Laparoscopic adjustable gastric banding (LAGB) results in significant lasting weight loss and improved metabolism in obese patients. To evaluate whether epigenetic factors could concur to these benefits, we investigated the subcutaneous adipose tissue (SAT) microRNA (miRNA) profile before (T0) and three years (T1) after LAGB in three morbidly obese women. Case Reports. SAT miRNA profiling, evaluated by TaqMan Array, showed four downexpressed (miR-519d, miR-299-5p, miR-212, and miR-671-3p) and two upexpressed (miR-370 and miR-487a) miRNAs at T1 versus T0. Bioinformatics predicted that these miRNAs regulate genes belonging to pathways associated with the cytoskeleton, inflammation, and metabolism. Western blot analysis showed that PPAR-alpha, which is the target gene of miR-519d, increased after LAGB, thereby suggesting an improvement in SAT lipid metabolism. Accordingly, the number and diameter of adipocytes were significantly higher and lower, respectively, at T1 versus T0. Bioinformatics predicted that the decreased levels of miR-212, miR-299-5p, and miR-671-3p at T1 concur in reducing SAT inflammation. Conclusion. We show that the miRNA profile changes after LAGB. This finding, although obtained in only three cases, suggests that this epigenetic mechanism, by regulating the expression of genes involved in inflammation and lipid metabolism, could concur to improve SAT functionality in postoperative obese patients

    Haplogroup T Is an Obesity Risk Factor: Mitochondrial DNA Haplotyping in a Morbid Obese Population from Southern Italy

    Get PDF
    Mitochondrial DNA (mtDNA) haplogroups have been associated with the expression of mitochondrial-related diseases and with metabolic alterations, but their role has not yet been investigated in morbid obese Caucasian subjects. Therefore, we investigated the association between mitochondrial haplogroups and morbid obesity in patients from southern Italy. The mtDNA D-loop of morbid obese patients (n=500; BMI > 40 kg/m2) and controls (n=216; BMI < 25 kg/m2) was sequenced to determine the mtDNA haplogroups. The T and J haplogroup frequencies were higher and lower, respectively, in obese subjects than in controls. Women bearing haplogroup T or J had twice or half the risk of obesity. Binomial logistic regression analysis showed that haplogroup T and systolic blood pressure are risk factors for a high degree of morbid obesity, namely, BMI > 45 kg/m2 and in fact together account for 8% of the BMI. In conclusion, our finding that haplogroup T increases the risk of obesity by about two-fold, suggests that, besides nuclear genome variations and environmental factors, the T haplogroup plays a role in morbid obesity in our study population from southern Italy

    Familial (F) pedigrees of the suspected mitochondrial diabetes patients enrolled in the study.

    No full text
    <p>The inclusion criteria were: Diabetes+at least one of the following: A) maternal heritability of diabetes or Impaired Fasting Glucose (IFG) and/or hearing impairment and/or maculopathy in three consecutive generations (or in two if there were 2–3 affected subjects/family); B) neurosensorial hearing impairment; and C) maculopathy. In each square it's reported the presence of the criteria (A, B and/or C) in the probands.</p
    corecore