48 research outputs found

    Multiresonant thermally activated delayed fluorescence emitters based on heteroatom doped nanographenes : recent advances and prospects for organic light-emitting diodes

    Get PDF
    We thank the Leverhulme Trust (RPG-2016-047) for the financial support. S.S. acknowledges sup-port from the Marie SkƂodowska-Curie Individual Fellowship (NarrowbandSSL EC Grant Agree-ment No: 838885). Computational resources have been provided by the Consortium des Équipements de Calcul Inten-sif (CÉCI), funded by the Fonds de la Recherche Scientifiques de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11, as well as the Tier-1 supercomputer of the FĂ©dĂ©ration Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement n1117545. DB is a FNRS Research Director.Since the first report in 2015, multiresonant thermally activated delayed fluorescent (MR‐TADF) compounds, a subclass of TADF emitters based on a heteroatom‐doped nanographene material, have come to the fore as attractive hosts as well as emitters for organic light‐emitting diodes (OLEDs). MR‐TADF compounds typically show very narrow‐band emission, high photoluminescence quantum yields, and small ΔE ST values, typically around 200 meV, coupled with high chemical and thermal stabilities. These materials properties have translated into some of the best reported deep‐blue TADF OLEDs. Here, a detailed review of MR‐TADF compounds and their derivatives reported so far is presented. This review comprehensively documents all MR‐TADF compounds, with a focus on the synthesis, optoelectronic behavior, and OLED performance. In addition, computational approaches are surveyed to accurately model the excited state properties of these compounds.Publisher PDFPeer reviewe

    Excited-state modulation in donor-substituted multiresonant thermally activated delayed fluorescence emitters

    Get PDF
    S.W. thanks the China Scholarship Council (201906250199). EZ-C and IDWS acknowledge support from EPSRC (EP/L017008, EP/P010482/1). We are also grateful for financial support from the University of St Andrews Restarting Research Funding Scheme (SARRF) which is funded through the Scottish Funding Council grant reference SFC/AN/08/020. EZ-C is a Royal Society Leverhulme Trust Senior Research fellow (SRF\R1\201089). We would also like to thank the Leverhulme Trust (RPG-2016-047) for financial support. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska Curie grant agreement No 838885 (NarrowbandSSL). S.M.S. acknowledges support from the Marie SkƂodowska-Curie Individual Fellowship. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifiques de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11, as well as the Tier-1 supercomputer of the FĂ©dĂ©ration Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement n1117545. Y.O. acknowledges funding by the Fonds de la Recherche Scientifique-FNRS under Grant n° F.4534.21 (MIS-IMAGINE). D.B. is a FNRS Research Director.Strategies to tune the emission of multiresonant thermally activated delayed fluorescence (MR-TADF) emitters remain rare. Here, we explore the effect of donor substitution about a MR-TADF core on the emission energy and the nature of the excited state. We decorate different numbers and types of electron-donors about a central MR-TADF core, DiKTa. Depending on the identity and number of donor groups, the excited state either remains short-range charge transfer (SRCT) and thus characteristic of an MR-TADF emitter or becomes a long-range charge transfer (LRCT) that is typically observed in donor–acceptor TADF emitters. The impact is that in three examples that emit from a SRCT state, Cz-DiKTa, Cz-Ph-DiKTa, and 3Cz-DiKTa, the emission remains narrow, while in four examples that emit via a LRCT state, TMCz-DiKTa, DMAC-DiKTa, 3TMCz-DiKTa, and 3DMAC-DiKTa, the emission broadens significantly. Through this strategy, the organic light-emitting diodes fabricated with the three MR-TADF emitters show maximum electroluminescence emission wavelengths, λEL, of 511, 492, and 547 nm with moderate full width at half-maxima (fwhm) of 62, 61, and 54 nm, respectively. Importantly, each of these devices show high maximum external quantum efficiencies (EQEmax) of 24.4, 23.0, and 24.4%, which are among the highest reported with ketone-based MR-TADF emitters. OLEDs with D–A type emitters, DMAC-DiKTa and TMCz-DiKTa, also show high efficiencies, with EQEmax of 23.8 and 20.2%, but accompanied by broad emission at λEL of 549 and 527 nm, respectively. Notably, the DMAC-DiKTa-based OLED shows very small efficiency roll-off, and its EQE remains 18.5% at 1000 cd m–2. Therefore, this work demonstrates that manipulating the nature and numbers of donor groups decorating a central MR-TADF core is a promising strategy for both red-shifting the emission and improving the performance of the OLEDs.Publisher PDFPeer reviewe

    Ionic multiresonant thermally activated delayed fluorescence emitters for light emitting electrochemical cells

    Get PDF
    M. K. would like to thank 2214-A International Research Fellowship Programme for Ph.D. students (1059B141900585). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska Curie grant agreement No 838885 (NarrowbandSSL). S.M.S. acknowledges support from the Marie SkƂodowska-Curie Individual Fellowship (grant agreement No 838885 NarrowbandSSL). A. K. G. is grateful to the Royal Society for Newton International Fellowship NF171163. L.M acknowledges that the project who gave rise to these results received support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme Grant agreement No. 834431, the Spanish Ministry of Science, Innovation and Universities (MICIU, RTI2018-095362-A-I00, and EQC2018-004888-P) and the Comunitat Valenciana (IDIFEDER/2020/063 and PROMETEU/2020/077). D.T. acknowledges support from the Comunitat Valenciana (CIGE/2021/0).We designed and synthesized two new ionic thermally activated delayed fluorescent (TADF) emitters that are charged analogues of a known multiresonant TADF (MR-TADF) compound, DiKTa. The emission of the charged derivatives is red-shifted compared to the parent compound. For instance, DiKTa-OBuIm emits in the green (λPL = 499 nm, 1 wt % in mCP) while DiKTa-DPA-OBuIm emits in the red (λPL = 577 nm, 1 wt % in mCP). In 1 wt % mCP films, both emitters showed good photoluminescence quantum yields of 71% and 61%, and delayed lifetimes of 316.6 ÎŒs and 241.7 ÎŒs, respectively, for DiKTa-OBuIm and DiKTa-DPA-OBuIm, leading to reverse intersystem crossing rates of 2.85 × 103 s−1 and 3.04 × 103 s−1. Light-emitting electrochemical cells were prepared using both DiKTa-OBuIm and DiKTa-DPA-OBuIm as active emitters showing green (λmax = 534 nm) and red (λmax = 656 nm) emission, respectively.Publisher PDFPeer reviewe

    A deep-blue-emitting heteroatom-doped MR-TADF nonacene for high-performance organic light-emitting diodes

    Get PDF
    This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska Curie grant agreement No 838885 (NarrowbandSSL). S.M.S. acknowledges support from the Marie SkƂodowska-Curie Individual Fellowship (grant agreement No 838885 NarrowbandSSL). We would like to thank the Leverhulme Trust (RPG-2016-047) for financial support. E.Z-C. and I.D.W.S acknowledge support from EPSRC (EP/L017008, EP/P010482/1). Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifiques de Belgique (F. R. S.-FNRS) under Grant No. 2.5020.11, as well as the Tier-1 supercomputer of the FĂ©dĂ©ration Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement n1117545. Y.O. acknowledges funding by the Fonds de la Recherche Scientifique-FNRS under Grant n° F.4534.21 (MIS-IMAGINE). G. R. acknowledges a grant from the ‘‘Fonds pour la formation a la Recherche dans l’Industrie et dans l’Agriculture’’ (FRIA) of the FRS-FNRS.We present a p- and n-doped nonacene compound, NOBNacene, that represents a rare example of a linearly extended ladder-type multiresonant thermally activated delayed fluorescence (MR-TADF) emitter. This compound shows efficient narrow deep blue emission, with a λPL of 410 nm, full width at half maximum, FWHM, of 38 nm, photoluminescence quantum yield, ΊPL of 71 %, and a delayed lifetime, τd of 1.18 ms in 1.5 wt % TSPO1 thin film. The organic light-emitting diode (OLED) using this compound as the emitter shows a comparable electroluminescence spectrum peaked at 409 nm (FWHM=37 nm) and a maximum external quantum efficiency (EQEmax) of 8.5 % at Commission Internationale de l’Éclairage (CIE) coordinates of (0.173, 0.055). The EQEmax values were increased to 11.2 % at 3 wt % doping of the emitter within the emissive layer of the device. At this concentration, the electroluminescence spectrum broadened slightly, leading to CIE coordinates of (0.176, 0.068).Publisher PDFPeer reviewe

    A deep blue B,N-doped heptacene emitter that shows both thermally activated delayed fluorescence and delayed fluorescence by triplet-triplet annihilation

    Get PDF
    Authors thank the Leverhulme Trust (RPG-2016-047). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska Curie grant agreement No 838885 (NarrowbandSSL) and 812872 (TADFlife). We thank Umicore for their generous supply of catalysts. S.S. acknowledges support from the Marie SkƂodowska-Curie Individual Fellowship. SB acknowledges support from the Bayrisches Staatsministerium für Wissenschaft und Kunst (Stmwk) in the framework of the initiative "SolTech", as well as from the German Science foundation (DFG) (No. 392306670). Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifiques de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11, as well as the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement n111754.An easy-to-access, near-UV-emitting linearly extended B,N-doped heptacene with high thermal stability is designed and synthesized in good yields. This compound exhibits thermally activated delayed fluorescence (TADF) at ambient temperature from a multiresonant (MR) state and represents a rare example of a non-triangulene-based MR-TADF emitter. At lower temperatures triplet–triplet annihilation dominates. The compound simultaneously possesses narrow, deep-blue emission with CIE coordinates of (0.17, 0.01). While delayed fluorescence results mainly from triplet–triplet annihilation at lower temperatures in THF solution, where aggregates form upon cooling, the TADF mechanism takes over around room temperature in solution when the aggregates dissolve or when the compound is well dispersed in a solid matrix. The potential of our molecular design to trigger TADF in larger acenes is demonstrated through the accurate prediction of ΔEST using correlated wave-function-based calculations. On the basis of these calculations, we predicted dramatically different optoelectronic behavior in terms of both ΔEST and the optical energy gap of two constitutional isomers where only the boron and nitrogen positions change. A comprehensive structural, optoelectronic, and theoretical investigation is presented. In addition, the ability of the achiral molecule to assemble on a Au(111) surface to a highly ordered layer composed of enantiomorphic domains of racemic entities is demonstrated by scanning tunneling microscopy.PostprintPeer reviewe

    Two boron atoms versus one : high-performance deep-blue multi-resonance thermally activated delayed fluorescence emitters

    Get PDF
    This work was supported financially by the JSPS Core-to-Core Program (grant number: JPJSCCA20180005) and Kyulux Inc. S. M. S. acknowledges support from the Marie SkƂodowska-Curie Individual Fellowship (grant agreement No 838885 NarrowbandSSL). We would like to thank the Leverhulme Trust (RPG-2016-047) for financial support. E. Z.-C. is a Royal Society Leverhulme Trust Senior Research fellow (SRF\R1\201089). We thank the EPRSC for funding (EP/R035164/1). Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifiques de Belgique (F. R. S.-FNRS) under Grant No. 2.5020.11, as well as the Tier-1 supercomputer of the FĂ©dĂ©ration Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement n1117545. Y. O. acknowledges funding by the Fonds de la Recherche Scientifique-FNRS under Grant no. F.4534.21 (MIS-IMAGINE). D. B. is a FNRS Research Director.Two new deep-blue narrowband multi-resonant emitters, 1B-DTACrs and 2B-DTACrs, one of which shows thermally activated delayed fluorescence (TADF), based on boron, nitrogen, and oxygen doped nanographenes are reported. Devices based on 2B-DTACrs showed an EQEmax of 14.8% and CIE coordinates of (0.150, 0.044), which are very close to the BT.2020 requirement for blue pixels.Publisher PDFPeer reviewe

    Judicious heteroatom doping produces high performance deep blue/near UV multiresonant thermally activated delayed fluorescence OLEDs

    Get PDF
    Funding: Horizon 2020 Framework Programme - 838885; Leverhulme Trust - RPG-2016-047; Engineering and Physical Sciences Research Council - EP/L017008, EP/P010482/1; Fonds de la Recherche Scientifiques de Belgique - 2.5020.11; Walloon Region - n1117545; Fonds De La Recherche Scientifique - FNRS - F.4534.21.Two multiresonant thermally activated delayed fluorescence (MR-TADF) emitters are presented and it is shown how further borylation of a deep-blue MR-TADF emitter, DIDOBNA-N, both blueshifts and narrows the emission producing a new near-UV MR-TADF emitter, MesB-DIDOBNA-N, are shown. DIDOBNA-N emits bright blue light (ΊPL = 444 nm, FWHM = 64 nm, ΊPL = 81%, τd = 23 ms, 1.5 wt% in TSPO1). The deep-blue organic light-emitting diode (OLED) based on this twisted MR-TADF compound shows a very high maximum external quantum efficiency (EQEmax) of 15.3% for a device with CIEy of 0.073. The fused planar MR-TADF emitter, MesB-DIDOBNA-N shows efficient and narrowband near-UV emission (λPL = 402 nm, FWHM = 19 nm, ΊPL = 74.7%, τd = 133 ms, 1.5 wt% in TSPO1). The best OLED with MesB-DIDOBNA-N, doped in a co-host, shows the highest efficiency reported for a near-UV OLED at 16.2%. With a CIEy coordinate of 0.049, this device also shows the bluest EL reported for a MR-TADF OLED to date.Publisher PDFPeer reviewe

    Substitution effects on a new pyridylbenzimidazole acceptor for thermally activated delayed fluorescence and their use in organic light-emitting diodes

    Get PDF
    The St Andrews team would like to thank the Leverhulme Trust (RPG-2016-047) for financial support. P.R. acknowledges support from a Marie SkƂodowska-Curie Individual Fellowship (MCIF; No. 749557). S.M.S acknowledges support from the Marie SkƂodowska-Curie Individual Fellowship, grant 27 agreement no. 838885 (NarrowbandSSL). Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifiques de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11, as well as the Tier-1 supercomputer of the FĂ©dĂ©ration Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement n1117545. We acknowledge support from the European Union’s Horizon 2020 research and innovation programme under the ITN TADFlife (GA 812872). Y.O. acknowledges funding by the Fonds de la Recherche Scientifique-FNRS under Grant n° F.4534.21 (MIS-IMAGINE). D.B. is a FNRS Research Director.In this work a new acceptor is used for use in thermally activated delayed fluorescence (TADF) emitters, pyridylbenzimidazole, which when coupled with phenoxazine allows efficient TADF to occur. N-functionalization of the benzimidazole using methyl, phenyl, and tert-butyl groups permits color tuning and suppression of aggregation-caused quenching (ACQ) with minimal impact on the TADF efficiency. The functionalized derivatives support a higher doping of 7 wt% before a fall-off in photoluminescence quantum yields is observed, in contrast with the parent compound, which undergoes ACQ at doping concentrations greater than 1 wt%. Complex conformational dynamics, reflected in the time-resolved decay profile, is found. The singlet−triplet energy gap, ΔEST, is modulated by N-substituents of the benzimidazole and ranges of between 0.22 and 0.32 eV in doped films. Vacuum-deposited organic light-emitting diodes, prepared using three of the four analogs, show maximum external quantum efficiencies, EQEmax, of 23.9%, 22.2%, and 18.6% for BIm(Me)PyPXZ , BIm(Ph)PyPXZ , and BImPyPXZ , respectively, with a correlated and modest efficiency roll-off at 100 cd m–2 of 19% 13%, and 24% of the EQEmax, respectively.Publisher PDFPeer reviewe

    Improving processability and efficiency of Resonant TADF emitters : a design strategy

    Get PDF
    This work is funded by the EC through the Horizon 2020 Marie Sklodowska-Curie ITN project TADFlife. The St Andrews team would also like to thank the Leverhulme Trust (RPG-2016- 047) and EPSRC (EP/P010482/1) for financial support. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifiques de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11, as well as the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement n1117545. AP acknowledges the financial support from the Marie Curie Fellowship (MILORD project, N°. 748042). DB is a FNRS Research Director. We thank Franck-Julian Kahle for support with data analysis.A new design strategy is introduced to address a persistent weakness with resonance thermally activated delayed fluorescence (R-TADF) emitters to reduce aggregation-caused quenching effects, which we identify as one of the key limiting factors. The emitter Mes3DiKTa shows an improved photoluminescence quantum yield of 80% compared to 75% for the reference DiKTa in 3.5 wt% mCP. Importantly, emission from aggregates, even at high doping concentrations, is eliminated and aggregation-caused quenching is strongly curtailed. For both molecules, triplets are almost quantitatively upconverted into singlets in electroluminescence, despite a significant (~0.21 eV) singlet-triplet energy gap (ΔEST), in line with correlated quantum-chemical calculations, and a slow reverse intersystem crossing. We speculate that the lattice stiffness responsible for the narrow fluorescence and phosphorescence emission spectra also protects the triplets against non-radiative decay. An improved EQEmax of 21.1% for Mes3DIKTa compared to the parent DiKTa (14.7%) and, importantly, reduced efficiency roll- off compared to literature resonance TADF OLEDs, shows the promise of this design strategy for future design of R-TADF emitters for OLED applications.Publisher PDFPeer reviewe
    corecore