3,546 research outputs found

    Advanced electrostatic ion thruster for space propulsion

    Get PDF
    The suitability of the baseline 30 cm thruster for future space missions was examined. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. Useful methodologies were produced for assessing both planetary and earth orbit missions. Payload performance as a function of propulsion system technology level and cost sensitivity to propulsion system technology level are among the topics assessed. A 50 cm diameter thruster designed to operate with a beam voltage of about 2400 V is suggested to satisfy most of the requirements of future space missions

    Ultra-high-sensitivity two-dimensional bend sensor

    Get PDF
    A multicore fibre Fabry-Perot-based strain sensor interrogated with tandem interferometry for bend measurement is described. Curvature in two dimensions is obtained by measuring the difference in strain between three co-located low finesse Fabry-Perot interferometers formed in each core of the fibre by pairs of Bragg gratings. This sensor provides a responsivity enhancement of up to 30 times that of a previously reported fibre Bragg grating based sensor. Strain resolutions of 0.6 n epsilon/Hz(1/2) above 1 Hz are demonstrated, which corresponds to a curvature resolution of similar to 0.012 km(-1)/Hz(1/2)

    An optical fibre dynamic instrumented palpation sensor for the characterisation of biological tissue

    Get PDF
    AbstractThe diagnosis of prostate cancer using invasive techniques (such as biopsy and blood tests for prostate-specific antigen) and non-invasive techniques (such as digital rectal examination and trans-rectal ultrasonography) may be enhanced by using an additional dynamic instrumented palpation approach to prostate tissue classification. A dynamically actuated membrane sensor/actuator has been developed that incorporates an optical fibre Fabry–Pérot interferometer to record the displacement of the membrane when it is pressed on to different tissue samples. The membrane sensor was tested on a silicon elastomer prostate model with enlarged and stiffer material on one side to simulate early stage prostate cancer. The interferometer measurement was found to have high dynamic range and accuracy, with a minimum displacement resolution of ±0.4μm over a 721μm measurement range. The dynamic response of the membrane sensor when applied to different tissue types changed depending on the stiffness of the tissue being measured. This demonstrates the feasibility of an optically tracked dynamic palpation technique for classifying tissue type based on the dynamic response of the sensor/actuator

    Investigation of shock waves in explosive blasts using fibre optic pressure sensors

    Get PDF
    The published version of this article may be accessed at the link below. Copyright @ IOP Publishing, 2006.We describe miniature all-optical pressure sensors, fabricated by wafer etching techniques, less than 1 mm(2) in overall cross-section with rise times in the mu s regime and pressure ranges typically 900 kPa (9 bar). Their performance is suitable for experimental studies of the pressure-time history for test models exposed to shocks initiated by an explosive charge. The small size and fast response of the sensors promises higher quality data than has been previously available from conventional electrical sensors, with potential improvements to numerical models of blast effects. Results from blast tests are presented in which up to six sensors were multiplexed, embedded within test models in a range of orientations relative to the shock front.Support from the UK Engineering&Physical Sciences Research Council and Dstl Fort Halstead through the MoD Joint Grants Scheme are acknowledged. WN MacPherson is supported by an EPSRC Advanced Research Fellowship

    Two-axis bend measurement with Bragg gratings in multicore optical fiber

    Get PDF
    We describe what is to our knowledge the first use of fiber Bragg gratings written into three separate cores of a multicore fiber for two-axis curvature measurement. The gratings act as independent, but isothermal, fiber strain gauges for which local curvature determines the difference in strain between cores, permitting temperature-independent bend measurement. (C) 2003 Optical Society of America

    Incorporating habitat distribution in wildlife disease models: conservation implications for the threat of squirrelpox on the Isle of Arran

    Get PDF
    Emerging infectious diseases are a substantial threat to native populations. The spread of disease through naive native populations will depend on both demographic and disease parameters, as well as on habitat suitability and connectivity. Using the potential spread of squirrelpox virus (SQPV) on the Isle of Arran as a case study, we develop mathematical models to examine the impact of an emerging disease on a population in a complex landscape of different habitat types. Furthermore, by considering a range of disease parameters, we infer more generally how complex landscapes interact with disease characteristics to determine the spread and persistence of disease. Specific findings indicate that a SQPV outbreak on Arran is likely to be short lived and localized to the point of introduction allowing recovery of red squirrels to pre-infection densities; this has important consequences for the conservation of red squirrels. More generally, we find that the extent of disease spread is dependent on the rare passage of infection through poor quality corridors connecting good quality habitats. Acute, highly transmissible infectious diseases are predicted to spread rapidly causing high mortality. Nonetheless, the disease typically fades out following local epidemics and is not supported in the long term. A chronic infectious disease is predicted to spread more slowly but can remain endemic in the population. This allows the disease to spread more extensively in the long term as it increases the chance of spread between poorly connected populations. Our results highlight how a detailed understanding of landscape connectivity is crucial when considering conservation strategies to protect native species from disease threats

    Characterisation and statistical analysis of breakdown data for a corona-stabilised switch in environmentally-friendly gas mixtures

    Get PDF
    Characterisation of a corona-stabilised switch in the single-shot regime, including triggering range, delay times and jitter is reported, over the pressure range 0-3 bar gauge, as a continuation of work from similar characterisation with this switch filled with SF6 with different gap spacings. When filled with mixtures of HFO-1234ze and N2, the breakdown voltage can be increased by up to ~306% and ~191% under negative and positive polarity, respectively, of that using 100% N2. These results were achieved with gas mixtures consisting of 80% N2 and 20% HFO-1234ze, by pressure. The maximum negative polarity triggering range was 13.6 kV, comparable to that achieved previously using SF6. The measured delay time and calculated jitter was generally found to increase with increasing pressure, and with increasing percentage (from 5% to 20%) of HFO-1234ze in the gas mixtures. Von Laue statistical analysis of time-to-breakdown data showed that both the formative time and statistical time increased with increasing pressure, and with increasing percentage of HFO-1234ze in the gas mixtures. The formative time under negative polarity was significantly longer than that for positive polarity. The results indicate that HFO-1234ze may be considered as a suitable candidate to replace SF6 for switching applications, although there are some operational observations that require further investigation

    Terahertz oscillations in an In<sub>0.53</sub>Ga<sub>0.47</sub>As submicron planar gunn diode

    Get PDF
    The length of the transit region of a Gunn diode determines the natural frequency at which it operates in fundamental mode – the shorter the device, the higher the frequency of operation. The long-held view on Gunn diode design is that for a functioning device the minimum length of the transit region is about 1.5μm, limiting the devices to fundamental mode operation at frequencies of roughly 60 GHz. Study of these devices by more advanced Monte Carlo techniques that simulate the ballistic transport and electron-phonon interactions that govern device behaviour, offers a new lower bound of 0.5μm, which is already being approached by the experimental evidence that has shown planar and vertical devices exhibiting Gunn operation at 600nm and 700nm, respectively. The paper presents results of the first ever THz submicron planar Gunn diode fabricated in In&lt;sub&gt;0.53&lt;/sub&gt;Ga&lt;sub&gt;0.47&lt;/sub&gt;A on an InP substrate, operating at a fundamental frequency above 300 GHz. Experimentally measured rf power of 28 µW was obtained from a 600 nm long ×120 µm wide device. At this new length, operation in fundamental mode at much higher frequencies becomes possible – the Monte Carlo model used predicts power output at frequencies over 300 GHz

    Quantitative localized proton-promoted dissolution kinetics of calcite using scanning electrochemical microscopy (SECM)

    Get PDF
    Scanning electrochemical microscopy (SECM) has been used to determine quantitatively the kinetics of proton-promoted dissolution of the calcite (101̅4) cleavage surface (from natural “Iceland Spar”) at the microscopic scale. By working under conditions where the probe size is much less than the characteristic dislocation spacing (as revealed from etching), it has been possible to measure kinetics mainly in regions of the surface which are free from dislocations, for the first time. To clearly reveal the locations of measurements, studies focused on cleaved “mirror” surfaces, where one of the two faces produced by cleavage was etched freely to reveal defects intersecting the surface, while the other (mirror) face was etched locally (and quantitatively) using SECM to generate high proton fluxes with a 25 μm diameter Pt disk ultramicroelectrode (UME) positioned at a defined (known) distance from a crystal surface. The etch pits formed at various etch times were measured using white light interferometry to ascertain pit dimensions. To determine quantitative dissolution kinetics, a moving boundary finite element model was formulated in which experimental time-dependent pit expansion data formed the input for simulations, from which solution and interfacial concentrations of key chemical species, and interfacial fluxes, could then be determined and visualized. This novel analysis allowed the rate constant for proton attack on calcite, and the order of the reaction with respect to the interfacial proton concentration, to be determined unambiguously. The process was found to be first order in terms of interfacial proton concentration with a rate constant k = 6.3 (± 1.3) × 10–4 m s–1. Significantly, this value is similar to previous macroscopic rate measurements of calcite dissolution which averaged over large areas and many dislocation sites, and where such sites provided a continuous source of steps for dissolution. Since the local measurements reported herein are mainly made in regions without dislocations, this study demonstrates that dislocations and steps that arise from such sites are not needed for fast proton-promoted calcite dissolution. Other sites, such as point defects, which are naturally abundant in calcite, are likely to be key reaction sites
    corecore