858 research outputs found
The effect of lipoprotein-associated phospholipase A2 deficiency on pulmonary allergic responses in Aspergillus fumigatus sensitized mice.
BackgroundLipoprotein-associated phospholipase A2 (Lp-PLA2)/platelet-activating factor acetylhydrolase (PAF-AH) has been implicated in the pathogenesis of cardiovascular disease. A therapeutic targeting of this enzyme was challenged by the concern that increased circulating platelet activating factor (PAF) may predispose to or increase the severity of the allergic airway response. The aim of this study was to investigate whether Lp-PLA2 gene deficiency increases the risk of PAF and IgE-mediated inflammatory responses in vitro and in vivo using mouse models.MethodsLp-PLA2-/- mice were generated and back crossed to the C57BL/6 background. PAF-AH activity was measured using a hydrolysis assay in serum and bronchoalveolar lavage (BAL) samples obtained from mice. Aspergillus fumigatus (Af)-specific serum was prepared for passive allergic sensitization of mice in vivo and mast cells in vitro. β- hexosaminidase release was studied in bone marrow derived mast cells sensitized with Af-specific serum or DNP-IgE and challenged with Af or DNP, respectively. Mice were treated with lipopolysaccharide (LPS) and PAF intratracheally and studied 24 hours later. Mice were sensitized either passively or actively against Af and were studied 48 hours after a single intranasal Af challenge. Airway responsiveness to methacholine, inflammatory cell influx in the lung tissue and BAL, immunoglobulin (ELISA) and cytokine (Luminex) profiles were compared between the wild type (WT) and Lp-PLA2-/- mice.ResultsPAF-AH activity was reduced but not completely abolished in Lp-PLA2-/- serum or by in vitro treatment of serum samples with a high saturating concentration of the selective Lp-PLA2 inhibitor, SB-435495. PAF inhalation significantly enhanced airway inflammation of LPS treated WT and Lp-PLA2-/- mice to a similar extent. Sensitized WT and Lp-PLA2-/- bone-marrow derived mast cells released β-hexosaminidase following stimulation by allergen or IgE crosslinking to equivalent levels. Wild type and Lp-PLA2-/- mice responded to passive or active allergic sensitization by significant IgE production, airway inflammation and hyperresponsiveness after Af challenge. BAL cell influx was not different between these strains while IL-4, IL-5, IL-6 and eotaxin release was attenuated in Lp-PLA2-/- mice. There were no differences in the amount of total IgE levels in the Af sensitized WT and Lp-PLA2-/- mice.ConclusionsWe conclude that Lp-PLA2 deficiency in C57BL/6 mice did not result in a heightened airway inflammation or hyperresponsiveness after PAF/LPS treatment or passive or active allergic sensitization and challenge
Optimization of double pulse pumping for Ni-like Sm x-ray lasers
We report a systematic study of double pulse pumping of the Ni-like Sm x-ray laser at 73 Angstrom, currently the shortest wavelength saturated x-ray laser. It is found that the Sm x-ray laser output can change by orders of magnitude when the intensity ratio of the pumping pulses and their relative delay are varied. Optimum pumping conditions are found and interpreted in terms of a simple model. (C) 1999 American Institute of Physics. [S0021-8979(99)07102-9]
Differential involvement of Na(+),K(+)-ATPase isozymes in preimplantation development of the mouse.
Na(+),K(+)-ATPase plays an essential role in mammalian blastocoel formation (cavitation) by driving trans-epithelial sodium transport. Previously, the alpha1 and beta1 subunit isoforms of this enzyme were identified in preimplantation mouse embryos and were assumed to be responsible for this function. Here we show that mRNAs encoding an additional alpha subunit isoform (alpha3) and the remaining two beta subunit isoforms are also present in preimplantation embryos. Whereas alpha3 mRNA accumulates between the four-cell and the blastocyst stages and thus results from embryonic transcription, the same could not be demonstrated for beta2 and beta3 mRNAs. Immunoblot analyses confirmed that these subunits are present in cavitating embryos. Using confocal immunofluorescence microscopy we found that alpha1 and beta1 subunits are concentrated in the basolateral membranes of the trophectoderm while being equally distributed in plasma membranes of the inner cell mass. In contrast, alpha3, beta2, and beta3 subunits were not detected in plasma membranes. Our current assessment, therefore, is that as many as six isozymes of Na(+),K(+)-ATPase could be involved in preimplantation development although it is primarily the alpha1beta1 isozyme that is responsible for blastocoel formation. Our findings imply that the regulation of sodium transport within the preimplantation mouse embryo is more complex than had been appreciated
Supersonic strain front driven by a dense electron-hole plasma
We study coherent strain in (001) Ge generated by an ultrafast
laser-initiated high density electron-hole plasma. The resultant coherent pulse
is probed by time-resolved x-ray diffraction through changes in the anomalous
transmission. The acoustic pulse front is driven by ambipolar diffusion of the
electron-hole plasma and propagates into the crystal at supersonic speeds.
Simulations of the strain including electron-phonon coupling, modified by
carrier diffusion and Auger recombination, are in good agreement with the
observed dynamics.Comment: 4 pages, 6 figure
Empirically testing the influence of light regime on diel activity patterns in a marine predator reveals complex interacting factors shaping behaviour
Diel cycles in marine predator diving behaviour centre around the light-mediated diel vertical migration (DVM) of prey, and are considered critical for optimizing foraging and limiting competition across global seascapes. Yet, our understanding of predator diel behaviour is based primarily on examining relative depth usage between constant day/night cycles with no formal investigation of how varying light regimes interact with abiotic factors to shape diel activity. The extreme seasonal light regimes (midnight sun, polar night, day/night cycle) in the Arctic provide a unique natural experimental setting to empirically investigate the occurrence and intensity of diel behaviour in marine predators relative to changing light levels while concomitantly assessing interacting abiotic factors. Depth time series data from satellite-linked tags deployed on six beluga whales (Delphinapterus leucas) for up to 12 months were used to quantify diel behaviour by calculating dissimilarity in time-at-depth between periods of low and high solar altitude on each day. Generalized additive mixed effects models were used to examine the influence of hours of daylight across extreme light cycles, coupled with bathymetry and sea ice concentration; focal diel patterns were further examined relative to the thermal structure of the water column. As predicted, belugas exhibited cathemerality during the midnight sun, and initiated diel behaviour with the onset of the fall day/night cycle, with a marked increase in its intensity with the progression to equal day/night length. Occurrence of diel patterns, however, was complex; ceasing in regions with seafloor depths \u3c700 \u3em, and occurring with greatest intensity when the water column was thermally homogeneous within the upper 150 m. Through empirical investigation, this study demonstrates that the onset of day/night light cycles and presumably associated prey DVM can modulate predator diel dive behaviour under certain circumstances, but highlights how the complex interaction of abiotic factors with light regime shape dynamic spatiotemporal patterns. These findings, building on a body of recent work, emphasize that the traditional view of the ubiquitous occurrence of diel behaviour tied to DVM at the base of the food web oversimplifies vertical predator–prey interactions, identifying the need for more structured investigation. Read the free Plain Language Summary for this article on the Journal blog
Year-Round Dive Characteristics of Male Beluga Whales From the Eastern Beaufort Sea Population Indicate Seasonal Shifts in Foraging Strategies
Dive behavior represents multiple ecological functions for marine mammals, but our understanding of dive characteristics is typically limited by the resolution or longevity of tagging studies. Knowledge on the time-depth structures of dives can provide insight into the behaviors represented by vertical movements; furthering our understanding of the ecological importance of habitats occupied, seasonal shifts in activity, and the energetic consequences of targeting prey at a given depth. Given our incomplete understanding of Eastern Beaufort Sea (EBS) beluga whale behavior over an annual cycle, we aimed to characterize dives made by belugas, with a focus on analyzing shifts in foraging strategies. Objectives were to (i) characterize and classify the range of beluga-specific dive types over an annual cycle, (ii) propose dive functions based on optimal foraging theory, physiology, and association with environmental variables, and (iii) identify whether belugas undergo seasonal shifts in the frequency of dives associated with variable foraging strategies. Satellite-linked time-depth-recorders (TDRs) were attached to 13 male belugas from the EBS population in 2018 and 2019, and depth data were collected in time series at a 75 s sampling interval. Tags collected data for between 13 and 357 days, including three tags which collected data across all months. A total of 90,211 dives were identified and characterized by twelve time and depth metrics and classified into eight dive types using a Gaussian mixed modeling and hierarchical clustering analysis approach. Dive structures identify various seasonal behaviors and indicate year-round foraging. Shallower and more frequent diving during winter in the Bering Sea indicate foraging may be energetically cheaper, but less rewarding than deeper diving during summer in the Beaufort Sea and Arctic Archipelago, which frequently exceeded the aerobic dive limit previously calculated for this population. Structure, frequency and association with environmental variables supports the use of other dives in recovery, transiting, and navigating through sea ice. The current study provides the first comprehensive description of the year-round dive structures of any beluga population, providing baseline information to allow improved characterization and to monitor how this population may respond to environmental change and increasing anthropogenic stressors
Categorization of compensatory motions in transradial myoelectric prosthesis users
Background: Prosthesis users perform various compensatory motions to accommodate for the loss of the hand and wrist as well as the reduced functionality of a prosthetic hand.
Objectives: Investigate different compensation strategies that are performed by prosthesis users.
Study Design: Comparative analysis
Methods: 20 able-bodied subjects and 4 prosthesis users performed a set of bimanual activities. Movements of the trunk and head were recorded using a motion capture system, and a digital video recorder. Clinical motion angles were calculated to assess the compensatory motions made by the prosthesis users. The video recording also assisted in visually identifying the compensations.
Results: Compensatory motions by the prosthesis users were evident in the tasks performed (slicing and stirring activities) as compared to the benchmark of able-bodied subjects. Compensations took the form of a measured increase in range of motion, an observed adoption of a new posture during task execution, and pre-positioning of items in the workspace prior to initiating a given task.
Conclusion: Compensatory motions were performed by prosthesis users during the selected tasks. These can be categorized into three different types of compensations
- …