34 research outputs found

    Characterization of high-quality MgB2(0001) epitaxial films on Mg(0001)

    Full text link
    High-grade MgB2(0001) films were grown on Mg(0001) by means of ultra-high-vacuum molecular beam epitaxy. Low energy electron diffraction and x-ray diffraction data indicate that thick films are formed by epitaxially oriented grains with MgB2 bulk structure. The quality of the films allowed angle-resolved photoemission and polarization dependent x-ray absorption measurements. For the first time, we report the band mapping along the Gamma-A direction and the estimation of the electron-phonon coupling constant l ~ 0.55 for the surface state electrons.Comment: 15 text pages, 6 figures Submitted for publicatio

    Structure and properties of the stable two-dimensional conducting polymer Mg5C60

    Get PDF
    We present a study on the structural, spectroscopic, conducting, and magnetic properties of Mg5C60, which is a two-dimensional (2D) fulleride polymer. The polymer phase is stable up to the exceptionally high temperature of 823 K. The infrared and Raman studies suggest the formation of single bonds between the fulleride ions and possibly Mg-C-60 covalent bonds. Mg5C60 is a metal at ambient temperature, as shown by electron spin resonance and microwave conductivity measurements. The smooth transition from a metallic to a paramagnetic insulator state below 200 K is attributed to Anderson localization driven by structural disorder

    High sensitivity nanoparticle detection using optical microcavities

    Get PDF
    We demonstrate a highly sensitive nanoparticle and virus detection method by using a thermal-stabilized reference interferometer in conjunction with an ultrahigh-Q microcavity. Sensitivity is sufficient to resolve shifts caused by binding of individual nanobeads in solution down to a record radius of 12.5 nm, a size approaching that of single protein molecules. A histogram of wavelength shift versus nanoparticle radius shows that particle size can be inferred from shift maxima. Additionally, the signal-to-noise ratio for detection of Influenza A virus is enhanced to 38:1 from the previously reported 3:1. The method does not use feedback stabilization of the probe laser. It is also observed that the conjunction of particle-induced backscatter and optical-path-induced shifts can be used to enhance detection signal-to-noise

    Formulation and characterization of mucoadhesive controlled release matrix tablets of captopril

    Get PDF
    The purpose of this study is to characterize controlled release matrix tablets of captopril and to find out the physicochemical properties that have an effect on the mucoadhesion process. The hydrophilic matrix tablets contain captopril, microcrystalline cellulose, barium sulfate, ascorbic acid, ethylcellulose N100, hydroxypropylmethylcellulose K15M, talc, magnesium stearate and colloidal silicon dioxide. The physicochemical properties of the formulations have been characterized using confocal microscopy, contact angle, and scanning electron microscopy. The potential mucoadhesion capabilities of the formulations were assessed measuring the surface free energy, the polar and dispersive forces, the spreading coefficients, the surface roughness, and the network structure of the hydrophilic matrix tablets. The results show that when the concentration of HPMC K15M increases, the spreading coefficients of polymer over mucus and mucus over polymer are more positive, thus increasing the contact between the matrix tablets with the mucus layer. The formulation that contains 15% of HPMC K15M is the formulation that presents a greater swelling capacity, a greater increase in surface roughness, and larger pores within the matrix. This formulation has a higher chain mobility and more free macromolecular chains able to diffuse in the mucus layer. Therefore, this formulation has the greatest potential mucoadhesion capability

    Surface Hubbard U of alkali fullerides

    Get PDF
    We report a combined photoemission spectroscopy (PES) and inverse photoemission spectroscopy (IPES) study of distilled, phase pure films of C60 and the monomeric fullerides Cs6C60, Cs4C60 and fcc RbC60. The separation between the highest energy PES and lowest energy IPES features, which is a measure of the barrier to hopping, is 1.45 eV in Cs4C60 and 0.7 eV in RbC60. This difference is large enough to explain, in a correlated electron picture, the reported differences in electronic mobility between the two stoichoimetries. From the PES-IPES energy separation, the value of the Hubbard U is estimated to be 1.5 eV in closed-shell C60 and Cs6C60, while in Cs4C60 and RbC60 such value is reduced to 1 and 0.7 eV, respectively. This trend can be only partially understood taking into account the different molecular polarizability and crystal structure of the various stoichiometries. The relatively low values found for open-shell compounds indicate that the bulk Hubbard U is smaller in open-shell fullerides than usually believed, which might help explain superconductivity and the observation of spin-singlets in odd-stoichiometry fullerides
    corecore