52 research outputs found

    A Personal Perspective on the Use of Modelling Simulation for Polymer Melt Processing

    No full text
    Copyright 2015 Carl Hanser Verlag. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Carl Hanser Verlag. The authors are grateful to the publisher, Carl Hanser Verlag, for letting the manuscript being archived in this Open Access repository. The final publication is available at = http://dx.doi.org/10.3139/217.3020International audienceThis paper gives a personal view on the state of art in relation to the modelling of polymer melt processing. The paper briefly reviews both industrial, laboratory and modelling developments over the last forty years and highlights the key aspects now required for realistic modelling of polymer melt processing. The paper summarizes elements relating to the numerical simulation of specific and general polymer processes and also provides topical examples of the application of numerical modelling to certain commercial processes. The paper concludes with identifying areas of polymer processing that still remain a challenge in relation to accurate prediction

    Fast cation-exchange separation of proteins in a plastic microcapillary disc

    Get PDF
    A novel disposable adsorbent material for fast cation-exchange separation of proteins was developed based on plastic microcapillary films (MCFs). A MCF containing 19 parallel microcapillaries, each with a mean internal diameter of 142μm, was prepared using a melt extrusion process from an ethylene-vinyl alcohol copolymer (EVOH). The MCF was surface functionalised to produce a cation-exchange adsorbent (herein referred as MCF-EVOH-SP). The dynamic binding capacity of the new MCF-EVOH-SP material was experimentally determined by frontal analysis using pure protein solutions in a standard liquid chromatography instrument for a range of superficial flow velocities, u =5.5-27.7cms . The mean dynamic binding capacity for hen-egg lysozyme was found to be approximately 100μg for a 5m length film, giving a ligand binding density of 413ngcm . The dynamic binding capacity did not vary significantly over the range of u tested. The application of this novel material to subtractive chromatography was demonstrated for anionic BSA and cationic lysozyme at pH 7.2. The chromatographic separation of two cationic proteins, lysozyme and cytochrome-c, was also performed with a view to applying this technology to the analysis or purification of proteins. Future applications might include separation based on anion exchange and other modes of adsorption. © 2011 Elsevier B.V

    Photo inactivation of virus particles in microfluidic capillary systems

    Get PDF
    It has long been established that UVC light is a very effective method for inactivating pathogens in a fluid, yet the application of UVC irradiation to modern biotechnological processes is limited by the intrinsic short penetration distance of UVC light in optically dense protein solutions. This experimental and numerical study establishes that irradiating a fluid flowing continuously in a microfluidic capillary system, in which the diameter of the capillary is turned to the depth of penetration of UVC light, uniquely treats the whole volume of the fluid to UVC light resulting in fast and effective inactivation of pathogens, with particular focus to virus particles. This was demonstrated by inactivating human herpes simplex virus type-1 (HSV-1, a large enveloped virus) on a dense 10% fetal calf serum solution in a range of fluoropolymer capillary systems, including a 0.75 mm and 1.50 mm internal diameter capillaries and a high-throughput MicroCapillary Film with mean hydraulic diameter of 206 μm. Up to 99.96% of HSV-1 virus particles were effectively inactivated with a mean exposure time of up to 10s, with undetectable collateral damage to proteins. The kinetics of virus inactivation matched well the results from a new mathematical model that considers the parabolic flow profile in the capillaries, and showed the methodology is fully predictable and scalable and avoids both the side effect of UVC light to proteins and the dilution of the fluid in current tubular UVC inactivation systems. This is expected to speed up the industrial adoption of non-invasive UVC virus inactivation in clinical biotechnology and biomanufacturing of therapeutic molecules

    CO2 dissolution and design aspects of a multiorifice oscillatory baffled column

    Get PDF
    Dissolution of CO2 in water was studied for a batch vertical multiorifice baffled column (MOBC) with varying orifice diameters (d0) of 6.4-30 mm and baffle open area (α) of 15-42%. Bubble size distributions (BSDs) and the overall volumetric CO2 mass transfer coefficient (KLa) were experimentally evaluated for very low superficial gas velocities, UG of 0.12-0.81 mm s-1, using 5% v/v CO2 in the inlet gas stream at a range of fluid oscillations (f = 0-10 Hz and x0 = 0-10 mm). Remarkably, baffles presenting large do = 30 mm and α = 36%, therefore in the range typically found for single-orifice oscillatory baffled columns, were outperformed with respect to BSD control and CO2 dissolution by the other baffle designs or the same aerated column operating without baffles or fluid oscillations. Flow visualization and bubble tracking experiments also presented in this study established that a small do of 10.5 mm combined with a small value of α = 15% generates sufficient, strong eddy mixing capable of generating and trapping an extremely large fraction of microbubbles in the MOBC. This resulted in increased interfacial area yielding KLa values up to 65 ± 12 h-1 in the range of the UG tested, representing up to 3-fold increase in the rate of CO2 dissolution when compared to the unbaffled, steady column. In addition, a modi fied oscillatory Reynolds number, Re′o and Strouhal number, St' were presented to assist on the design and scale-up of gas-liquid systems based on multiorifice oscillatory ba ffled columns. This work is relevant to gas-liquid or multiphase chemical and biological systems relying on efficient dissolution of gaseous compounds into a liquid medium.BBSRC -European Commissio

    Large-scale ordering of nanoparticles using viscoelastic shear processing

    Get PDF
    This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Nature Publishing Group.Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear (BIOS) technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong structural colour. With oscillatory strain amplitudes of 300%, crystallisation initiates at the wall and develops quickly across the bulk within only 5 oscillations yielding sharp intense reflectance peaks of tunable colour. The resulting structure of randomly stacked hexagonal close-packed layers parallel to the shear plane, is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonics materials, and forms a generic tool for ordering nanoparticles.We acknowledge EPSRC grants EP/G060649/1, EP/H027130/1, EP/E040241, EP/L027151/1 and EU ERC grants LINASS 320503 and FP7 291522-3DIMAGE

    Hydroxypropyl Methylcellulose as a Novel Tool for Isothermal Solution Crystallization of Micronized Paracetamol

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Crystal Growth and Design, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see: http://pubs.acs.org/doi/abs/10.1021/cg4009637Pulmonary inhalation is increasingly being selected as a preferred route for the delivery of both small and large drug macromolecules for the treatment of a range of pathologies. The direct crystallization of micronized powders, in particular, paracetamol, remains difficult, as it requires the ability to work in high solution supersaturations where agglomeration, wall crusting, and heterogeneous nucleation hinder the control of crystal size and crystal size distribution. Polymer additives are recognized to help drive the production of a given polymorph or controlling crystal shape by means of adsorption on the crystal surface. With the aim of exploiting the polymer-control nucleation and growth of crystals for enhanced direct crystallization of micronized powders, batch cooling crystallization of paracetamol in water was carried out in the presence of 0.1-0.8% w/w hydroxypropyl methylcellulose (HPMC). In the presence of polymer, the onset of nucleation was delayed and extended beyond the cooling time of the solution, resulting in an isothermal cooling crystallization and the production of micronized paracetamol with a mean crystal size D50, in the range of 15-20 μm and an improved crystal size distribution. Equally, the rate generation of solution cloudiness was reduced by over 3-fold for the highest HPMC concentration tested, with no detectable impact on final product yield. The mechanisms for nucleation delay and growth inhibition by HPMC is unknown; however, a modification of crystals shape observed upon the addition of HPMC to the solution suggested it might be related to mass transfer limitations and intermolecular hydrogen bonding between the large HPMC and the small drug molecules. This technique can potentially be used for direct crystallization of other micronized drugs. © 2014 American Chemical Society
    corecore