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Abstract 

A novel disposable adsorbent material for fast cation-exchange separation of proteins was 

developed based on plastic microcapillary films (MCFs). A MCF containing 19 parallel 

microcapillaries, each with a mean internal diameter of 142 microns, was prepared using a 

melt extrusion process from an ethylene-vinyl alcohol copolymer (EVOH).  The MCF was 

surface functionalised to produce a cation-exchange adsorbent (herein referred as MCF-

EVOH-SP). The dynamic binding capacity of the new MCF-EVOH-SP material was 

experimentally determined by frontal analysis using pure protein solutions in a standard Akta 

chromatography instrument for a range of superficial flow velocities, uLS=5.5-27.7 cm s-1.  

The mean dynamic binding capacity for hen-egg lysozyme was found to be approximately 

100 µg for a 5 m length film, giving a ligand binding density of 413 ng cm-2.  The dynamic 

binding capacity did not vary significantly over the range of uLS tested. The application of this 

novel material to subtractive chromatography was demonstrated for anionic BSA and 

cationic lysozyme at pH 7.2. The chromatographic separation of two cationic proteins, 

lysozyme and cytochrome-c, was also performed with a view to applying this technology to 

the analysis or purification of proteins. 



1. Introduction 

Downstream bioprocessing represents a substantial cost in the production of 

biopharmaceuticals. Chromatography processes allow separation of proteins based on their 

size, charge and/or net charge. The most commonly used chromatography separation 

operations are based on microporous matrices and packed bed columns, which have high 

protein capacities and present good separation characteristics [1]. However, due to their 

packed bed format there are several limitations to this approach including cost, bed 

compression leading to high pressure drop and low mass transfer rates due to the 

dependence on intra-particle diffusion for the transport of solute molecules to their binding 

sites within the pores of the media.  In practice, these limitations necessitate slow column 

flow rates [2].  Radial and axial dispersion limitations and channelling arising from formation 

of flow passages due to cracking of the packed bed further impede operability [1].  

To overcome some of the limitations of packed bed chromatography, synthetic microporous 

or macroporous membranes have been developed as chromatographic media [1-3]. In 

membrane chromatography processes the transport of solutes to their binding sites takes 

place predominantly by convection, thereby reducing both process time and eluate volume. 

As the binding efficiency is largely independent of flow rate, and there is minimal pressure 

drop across the membranes, separations can be run at high flow rates [3].  Scale up of 

membrane chromatography is possible due to its modular format. 

Here, the use of plastic microcapillary films (MCFs) as a basis for rapid bioseparations is 

presented. MCFs are a novel microstructured material containing continuous microcapillaries 

that can be extruded from a range of thermoplastic polymers with different material 

characteristics in a low cost scalable procedure [4,5].  In this work MCF was extruded from 

ethylene-vinyl alcohol copolymer and surface activated for cation exchange chromatography 

separation of proteins.  As with membrane chromatography, transport of solutes to binding 

sites occurs mainly by convection. This feature, in combination with the low pressure drop 



for flows through the MCF, enables protein separations to be performed at high flow rates. 

For MCF’s, with no intraparticle diffusion resistance and high film mass transfer rates, the 

mass transfer resistance is low compared to conventional porous adsorbents.  However, the 

available surface area for protein binding in MCF is substantially lower compared to porous 

adsorbents. 

Scale-up of MCF separations is similar to the linear scale-up of membrane processes.  

Throughput is particularly high relative to conventional adsorbents, due to a fundamental 

difference in the relationship between equilibrium and dynamic binding capacities. With a 

conventional cation-exchange adsorbent (e.g. SP Sepharose) the total surface area for 

protein adsorption per unit volume of adsorbent, at 127 m2 ml-1 [6] is ~4500 times that of an 

MCF with 142 µm capillaries and surface area 0.028 m2 ml-1.  For equal ligand densities, 

conventional adsorbents thus have ~4500-fold higher Equilibrium Binding Capacity (EBC).  

However, in bio-manufacturing a significant proportion of this surface is not accessed and 

the performance determining parameter is not the EBC but the Dynamic Binding Capacity 

(DBC); the adsorbent capacity during flow. 

Whereas conventional columns are operated with low superficial liquid velocities of 

<300 cm hr-1, MCF’s can be run with superficial velocities up to 330-times higher since no 

matrix compression occurs and high pressures can be used (up to 50 bar pressure [7]).  For 

a conventional porous adsorbent under typical operating conditions the overall mass transfer 

resistance to adsorption [8] is of relative magnitude 240 × EBC.  For MCF’s, with no 

intraparticle diffusion resistance and high film mass transfer rates, the overall mass transfer 

resistance is only of order 0.023 × EBC.  Consequently, the rate of protein adsorption can be 

approximately 5-orders of magnitude higher in MCFs.  All ligands are accessible and much 

higher dynamic binding capacities are obtainable when operated at high throughput. 

Additionally, breakthrough curves for MCFs are sharp even at high throughputs [9]. Indeed, 

when operated with a flow velocity of 160 m h-1 this MCF displays a similar number of 



theoretical plates to a 20 cm Sepharose packed column, operated at 100 cm h-1. MCFs thus 

provide the ideal plug-flow behaviour that is needed for sharp chromatography breakthrough 

at high liquid flow rates. MCFs are fabricated from cheap polymer resins using a low cost 

extrusion process similar to that used for other disposable bioprocessing items (e.g. bags, 

filter housings and tubing). Materials and processing costs of ~50 pence/m are estimated, 

such that the cost for a 5 m cation-exchange MCF would be ~£2.50. Module assembly and 

qualification, sales, distribution and manufacturer’s margin would add to this cost to a similar 

extent as with current membrane and adsorbent technologies. Overall though, whereas MCF 

units might be physically larger than conventional columns, the manufacturing cost per unit 

will be significantly lower. Furthermore as the MCF is transparent, the separation can be 

tracked anywhere along its length. 

2. Material and Methods 

2.1 Chemicals 

Ethylene-vinyl alcohol copolymer (EVOH) containing 32 mol% of ethylene was supplied by 

Eval Europe (Antwerp, Belgium). NaOH, cyanuric chloride, acetone, Na2HPO4 , MES, TRIS, 

HCl 3-amino-1-propanesulphonic, chick-egg lysozyme (pI 11, Mr 14.3K), Bovine Serum 

Albumin (BSA)(pI 4.9, Mr 67.0K [10]), bovine cytochrome-c (pI 9.3, Mr 12.2K [10]) were 

supplied by Sigma-Aldrich (St. Louis, Missouri). 

2.2 Production of MCF-EVOH disc 

An MCF was in-house extruded from ethylene-vinyl alcohol copolymer (EVOH) containing 32 

mol% of ethylene following a patented extrusion method described in Mackley and Hallmark 

(2005) [11] using the set of temperature recommended by the manufacturer. After that, a 5 

m piece of MCF-EVOH was wrapped into a disc to give a compact module (Figure 1) and 

the two ends connected to an Upchurch 1/4 inch HPLC connector using slow-setting epoxy. 

2.3 Surface modification of MCF-EVOH disc with SP groups 



The internal surface of the microcapillaries in the MCF-EVOH disc was chemically treated to 

produce a cation exchange chromatography adsorbent using the method of McCreath et al. 

[12]. Briefly, the 5 m length of MCF-EVOH was first activated by flowing 30 ml ice cold NaOH 

(1M) through the microcapillaries of the MCF in an ice bath for 30 min. using an HPLC 

pump. This increased nucleophilicity by introducing alkoxide groups on the vinyl alcohol on 

the plastic surface. Then 20 ml ice cold cyanuric chloride (50 mM) in acetone was passed 

through the MCF in an ice bath for 20 min. to activate the plastic with a linker. The MCF was 

then washed with 10 ml ice cold MilliQ water in an ice bath for 10 min.. 

For the covalent attachment of sulfonic acid (SP) groups to the activated surface of MCF-

EVOH, 20 ml Na2HPO4 (1M) containing 1g 3-amino-1-propanesulphonic acid (pH 9.1) in a 

40oC water bath was left recirculating through the MCF overnight using an HPLC pump. 

Following this step the water bath temperature was increased to 60oC for 5 hrs, after which 

20 ml MilliQ water was flowed through the SP modified MCF for 20 min. Finally, the MCF-

EVOH-SP was washed with 20 ml of NaOH (0.4M) for 20 min. followed by 20 ml MilliQ water 

for another 20 min.. The MCF-EVOH-SP was stored at 4oC in 20 mM Tris-HCl pH 7.2. 

2.4 Dynamic binding capacity analysis of a MCF-EVOH-SP disc 

The Upchurch ¼ inch HPLC connector glued to each end of the MCF-EVOH-SP disc 

facilitated its connection to a sample loop valve in a standard Akta chromatography machine 

as illustrated in Figure 2. Using this configuration it was possible to control the injection of 

sample as well as buffer gradients of different salt concentrations through the disc in the 

same way as standard packed bed columns. All chromatographic protein separations were 

performed with the plastic disc embedded in an ice bath. 

The dynamic binding capacity was analysed to establish the effect of the superficial flow 

velocity on the chromatographic separation experiments using the newly fabricated 5 m long 

MCF-EVOH-SP disc with an internal disc volume of ∼1.5 ml. The MCF-EVOH-SP disc was 

first equilibrated with the running buffer, 20 mM Tris-HCl, loaded from the Akta syringe pump 



A (Figure 2) for at least 10 disc volumes. Protein was then loaded by injecting a solution of 

0.2 mg ml-1 lysozyme in 20 mM Tris-HCl at pH 7.2 with a sample Smartline HPLC pump 

(Knaeur, Berlin, Germany) at flow rates of 1.0, 2.0, 3.0, 4.0 and 5.0 ml min-1 corresponding 

to mean superficial flow velocities of 5.5, 11.1, 16.6, 22.2 and 27.7 cm s-1, respectively. 

Protein loading at each flow rate was continued until a plateau was reached in UV 

absorbance as measured by the Akta detector at the outlet of the disc. The disc was 

subsequently washed with the running buffer to remove the unbound protein. The bound 

protein was then eluted with a step gradient of 0.5 M of NaCl in 20 mM Tris-HCl pH 7.2 from 

Akta pump B. The peak integration of protein absorbance measured at 280 nm allowed the 

calculation of the amount of lysozyme eluted at each flow rate which was assumed to be 

linearly proportional to the mass of protein initially bound. All experiments where done in 

duplicate. 

2.5 MCF-EVOH-SP surface ligand binding density analysis  

The ligand binding density on the internal surfaces of the newly fabricated MCF-EVOH-SP 

disc was measured using the Langmuir isotherm analysis [13]. The Langmuir equation 

states: 

           (1) 

Where θ is the fractional coverage of the surface, C is the concentration and α is the 

diffusion constant. At equilibrium the saturation loading of bound protein is qmax, which is 

related to the amount of bound protein, q, at different starting protein loading concentrations 

by: 

           (2) 

Combining equations (1) and (2): 



          

 (3) 

Equation (3) allows qmax to be calculated by analysing the mass of protein bound, q, for 

different protein loading concentrations, C. This maximum, equilibrium saturation loading 

qmax represents the binding capacity of the MCF-EVOH-SP fabricated. Before this analysis 

the MCF-EVOH-SP disc was first equilibrated with the 20 mM Tris-HCl running buffer using 

Akta pump A (Figure 2) for at least 6 disc volumes. Then different concentrations of 

lysozyme were inject in separate experiments into the MCF disc using an HPLC pump 

(Model 422, Kontron Instruments, UK) for at least 15 min (i.e. 10 disc volumes). This allowed 

protein concentration to homogenise along the length of the disc and provided the necessary 

time scale for protein diffusion to occur from the bulk solution to the capillary walls attaining 

equilibrium between bound and unbound protein molecules. The lysozyme concentrations 

tested were 0.1, 1.0, 5.0, 10.0, 20.0, 50.0, 80.0, 150.0 µg ml-1 in 20 mM Tris-HCl at pH 7.2 at 

a flow rate of 2.0 ml min-1 corresponding to a superficial mean flow velocity of 11.1 cm s-1. 

The disc was subsequently washed with the running buffer for at least 5 column volumes to 

remove the unbound protein. The bound protein was then eluted at the same flow rate with a 

step gradient of 0.5 M of NaCl in 20 mM Tris-HCl pH 7.2 from Akta pump B. The peak 

integration of protein absorbance measured at 280 nm allowed the calculation of the amount 

of lysozyme eluted at following each different lysozyme loading concentration. All 

experiments where done in duplicate. 

2.6 Proof-of-concept of bioseparations in the MCF-EVOH-SP disc 

Potential application of the MCF-EVOH-SP as a new adsorbent for rapid capture of 

impurities (i.e. subtractive chromatography) was demonstrated by removal of lysozyme as a 

model impurity from a sample containing BSA. The MCF-EVOH-SP was first equilibrated 

with running buffer (20 mM Tris-HCl at pH 7.2) then a mixture of 0.5 mg ml-1 BSA and 0.5 mg 

ml-1 lysozyme in 20 mM Tris-HCl at pH 7.2 was injected into the MCF disc using a 100 µl 



sample loop at 2.0 ml min-1. A single step gradient of 0.5 M NaCl in 20 mM Tris-HCl at pH 

7.2 was used to elute bound protein in this experiment. The purity of the peaks recorded by 

UV absorbance was tested by analysing fractions collected in SDS-PAGE analysis. The 

experiments were then repeated with BSA and lysozyme separately. 

Chromatographic separation of a solution of cationic proteins was demonstrated by injecting 

a mixture of 0.1 mg ml-1 lysozyme and 0.1 mg ml-1 cytochrome-c in 20 mM MES at pH 6.0 

using a 100 µl sample loop at 2.0 ml min-1. A linear gradient of between 0 and 1.0 M NaCl in 

20 mM MES at pH 6.0 over 4 min was used to differentially elute bound protein. The purity of 

the peaks recorded by UV absorbance was tested by analysing fractions collected from the 

chromatographic separation in SDS-PAGE analysis. The experiments where then repeated 

for lysozyme and cytochrome-c separately. 

3. Results and discussion 

Figure 1 shows the MCF successfully produced from the EVOH copolymer. This 

thermoplastic material presented unique features that made it an ideal matrix for 

chromatographic applications, such as a high density of functional groups (up to 68 mol% of 

vinyl alcohol groups), a hydrophilic surface, good optical transparency, low water absorption 

and insolubility in aqueous solutions. A 5 m length section of MCF-EVOH could be wound 

into a disc module with 70 mm in diameter (Figure 1a). Dark field optical microscopy 

measurements of a cross section of the resulting extruded MCF (Figure 1b) indicates that 

the microcapillaries in the film have internal diameters of 142 µm ± 9.8 µm. The estimated 

total internal surface area available in the disc was 423.8 cm2. 

A series of frontal analysis experiments using lysozyme allowed the dynamic binding 

capacity of the derivatised MCF-EVOH-SP to be determined for a range of high superficial 

flow velocities, i.e. 5.5-27.7 cm s-1. A typical normalised breakthrough curve for lysozyme 

can be seen in Figure 3 which shows the binding and elution of lysozyme in 20 mM Tris-HCl 

buffer at pH 7.2 in a “load” step then a “wash” step in 20 mM Tris-HCl at pH 7.2, followed by 



an elution step using 0.5 M NaCl in 20 mM Tris-HCl at pH 7.2 at a superficial flow velocity of 

11.1 cm s-1. The binding of lysozyme with pI 11 to the SP treated MCF surface seen in 

Figure 3 is expected at this pH and demonstrates the cation exchange nature of this 

chemically modified thermoplastic substrate. The estimated mass of protein bound in this 

experiment was around 133 µg as determined from the integration of the elution peak in the 

"Elute" phase in Figure 3, corresponding to a binding density of ∼313.8 ng cm-2 for lysozyme. 

Results of the dynamic binding analysis with lysozyme for other superficial flow velocities 

can be found in Figure 4a. The hashed area in the left hand side of the plot represents the 

typical superficial flow velocities used for packed bed chromatography columns, normally 

operated at very low superficial velocities such a 300 cm h-1 (i.e. ∼0.1 cm s-1). The data 

shows no significant effect of the superficial flow velocity on the binding capacity of lysozyme 

in the derivatised disc, where a mean binding capacity of 150 ± 30.0 µg was obtained. This 

quite remarkable feature of this new technology results from the non-porous nature and flow 

characteristics of small bore microcapillaries where mass transport of solutes occurs 

predominantly by convection. In microporous beads, the protein adsorption is controlled by 

diffusivity of proteins from the bulk solution to the core of the beads, therefore very low 

superficial flow velocities have to be used to provide the necessary time for the equilibrium to 

be attained and to minimise the axial dispersion of the solute throughout the column height. 

Figure 4b shows the pressure drop through the disc increased linearly with the superficial 

flow velocity and follows Hagen-Poiseuille's equation for pressure drop in laminar flow in 

tubes. A mean internal hydraulic diameter of 142 µm and an even flow distribution through 

the 19 capillaries was assumed. The parallel array of microcapillaries provides an increased 

surface area whilst keeping modest pressure drops at high superficial flow velocities. A flow 

rate of 2.0 ml min-1, corresponding to a superficial flow velocity of 11.1 cm s-1 was used for 

subsequent surface ligand binding density analysis and proof-of-concept separation 

experiments as both the binding capacity and pressure drop were favourable at that flow 

rate. 



The density of ligands introduced to the inner surface of the capillaries in the MCF-EVOH-SP 

disc was found to be too low for analysis by FTIR or elemental analysis so the Langmuir 

isotherm analysis had to be used [13]. Egg lysozyme was used as model protein in this 

experimental set. Figure 6 shows the mass of protein binding, q, achieved on each run at the 

different protein loading concentrations, C, tested. The line representing the Langmuir 

isotherm equation can be seen to fit the data very well and gives an equilibrium saturation 

binding density, qmax, from equation (3) of 180 µg and a disassociation constant Kd 

(concentration at qmax/2) is 5.2 µg ml-1. This equilibrium saturation binding density of 

lysozyme is equivalent to 424.7 ng cm-2 or 29.7 pmol cm-2 in relation to the surface area of 

the disc, or 120 µg ml-1 in relation to the internal volume of the solution in the disc. The good 

fit of the Langmuir plot with the experimental data shows that lysozyme binds to the cationic 

support in a monolayer. With no porosity expected in the EVOH material, the total surface 

area estimated in a 5 m disc is equal to ∼423.8 cm2. Assuming a spherical molecule 

diameter for lysozyme of 3 nm (measurement taken from crystal structure Protein Data Bank 

entry 3IJU), approximating hexagonal packing geometry the estimated binding density for 

lysozyme binding as a monolayer on the surface is 26 pmol cm-2, which gives a total of 157 

µg in the whole disk. This value is 13% lower than qmax obtained, which can be explained by 

a level of rogosity observed in the inner surface of the microcapillaries in the MCF-EVOH-SP 

disc (results not shown). 

The binding density value measured is several orders of magnitude lower than those 

typically obtained for packed bed column media such as ~55 mg ml-1 of SP Sepharose High 

performance beads (GE Healthcare). This apparent lower binding capacity of the MCF disc 

per unit volume is largely due to the protein binding the capillary walls as a monolayer in 

absence of porosity present in standard packed bed media. As a result this MCF 

chromatography approach is better favoured for high speed analytical applications rather 

than preparative mode applications.  



Two sets of experiments were performed to demonstrate usability of MCF-EVOH-SP in the 

downstream processing of protein solutions: the first set aimed at "subtractive mode" 

operation; the second in "separation mode". 

In some downstream bioprocess steps it is desirable to remove trace impurities from a 

solubilised target protein product by adsorbing the impurity to an inert surface which is 

ideally low-cost and disposable. This is commonly referred to as “subtractive” 

chromatography. To demonstrate the utility of the novel MCF-EVOH-SP adsorbent produced 

in this work to subtractive chromatography a model impurity, lysozyme, was removed from a 

hypothetical bioproduct, BSA. Figure 6A demonstrates the efficient capture and subsequent 

elution of a 100 µl pulse of lysozyme at a concentration of 0.5 mg ml-1 in the disc. About 

97.4% w/w of protein was readily captured in the derivatised disc whilst flowing at high 

superficial flow velocity. Figure 6B shows a 100 µl pulse of 0.5 mg ml-1 of anionic BSA 

passing straight through the derivatised disc without binding the activated surface. Figure 6C 

demonstrates the removal of the model impurity lysozyme from a mixture of BSA allowing 

the lysozyme to pass directly through the MCF unbound. In this figure, the two proteins were 

loaded in a single 100 µl pulse each protein at the same 0.5 mg ml-1 concentration. The 

different peak heights and areas in the chromatograms are related to the higher extinction 

coefficient of lysozyme at the selected wavelength. The SDS-PAGE analysis of the 1.0 ml 

sample fractions collected in this experiment at the outlet of the disc is shown in Figure 7, 

and confirms that BSA (Mr= 67kDa) flows unhindered through the MCF-EVOH-SP during the 

protein loading step (fractions 1-3). Due to the sensitive silver staining protocol used for 

visualising the protein bands some lysozyme (Mr=14.4 kDa) can be seen in the flow through 

fraction 3, corresponding to unbound lysozyme breaking through the disc. The 

chromatogram shown above in Figure 6A has revealed that about 2.6% w/w of lysozyme 

does not bind, breaking through the disc by the end of the loading stage. Bound lysozyme 

was subsequently eluted from the MCF disc by introducing a step salt input into the disc, 

which corresponds to the eluted fractions 6-11 analysed. Some additional protein fragments 



were detected in fraction 6 possibly from some low level proteolytic activity producing 

lysozyme cleavage products. Two lanes in the SDS-PAGE show a BSA and Lysozyme 

control sample run for comparison.  

The second set of experiments aimed at testing the feasibility of separating two cationic 

proteins, lysozyme and cytochrome-c in the cation exchange disc fabricated. In Figure 8A, 

100 µl of cytochrome-c at a concentration of 0.1 mg ml-1 was injected into the 

chromatography disc. About 95.0% w/w of protein bound the disc and eluted upon a 

application of a linear NaCl gradient. Similarly in Figure 8B, about 95.4% w/w of lysozyme 

injected in a 100 µl pulse at a concentration of 0.1 mg ml-1 was seen to bind the column and 

elute from the disc with the same NaCl gradient in the elution step. Figure 8C demonstrates 

that following injection of 100 µl of a mixture of these two proteins, about 95.8% w/w of the 

total protein has bound the disc. In the elution stage, two elution peaks could be detected 

during the NaCl gradient elution as expected. The SDS-PAGE analysis of the eluate 

collected at the outlet of the disc in 1.0 ml fractions (Figure 9) confirmed that both 

cytochrome-c and lysozyme bound the MCF-EVOH-SP disc. At the start of NaCl gradient 

elution, cytochrome-c (Mr = 12.2 kDa) eluted from the disc first in fraction 11 (corresponding 

to 8-9 column volumes in the chromatogram) due to its low pI of 9.3 then lysozyme (Mr = 

14.4 kDa) elutes subsequently with its higher pI of 11 in fractions 14 to 18. The SDS-PAGE 

analysis shows a good level of separation of the two proteins, with the two proteins eluting in 

completely distinct fractions. However, the chromatogram in Figure 8C shows a level of 

overlapping of the two protein peaks, presumably as a result of axial dispersion in the UV 

cell detector (where the dead volume is not insignificant).This shows that small amounts of 

proteins with close isoeletric point can be quickly and effectively separated with this new 

plastic disc chromatography technology. 

Table 1 summarises the current benefits of this new chromatographic technology in 

comparison with the two main chromatography substrates: microporous beads and 

chromatography membranes. Although the binding capacities presented by microporous 



beads and membranes are clearly higher than those herein reported for the EVOH-MCF-SP, 

this new plastic chromatography disc technology has the potential for offering a cheaper 

reasonable resolution method for rapid protein analysis. Additionally the MCF substrate 

allows mid-separation tracking and parallel analysis as separation in each individual capillary 

can be tracked separately with a simple UV area imaging system as a result of the flat 

external surfaces of the plastic film. 

4. Conclusions 

We have demonstrated a novel extruded plastic chromatography substrate can be used in 

the fast cation exchange separation of proteins. A 5 m plastic film melt-extruded from EVOH 

containing an array of 19 microcapillaries embedded in it was chemically derivatised with SP 

groups to produce a cation exchange chromatography disc. Frontal analysis and equilibrium 

Langmuir isotherm analyses using model protein solutions allowed full characterisation of 

this new chromatographic material. Although the obtained binding capacities were 

comparatively low for applications in preparative chromatography this technology shows 

great promise as a low pressure alternative for low cost, high throughput qualitative 

chromatographic analysis of proteins. 
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List of tables 

Table 1. Benefit comparison analysis of plastic microcapillary disc chromatographic with 

current packed beds and membranes protein chromatography technologies 

 Chromatography substrate 

Substrate feature Microporous 
beads Membrane 

Plastic 
Microcapillary 

Disc 

1. Binding capacities High High Medium/Low 

2. Superficial flow velocities Low High High 

3. Separation resolution High Medium Medium 

4. Pressure drops High Low Low 

5. Scale up potential Poor Good (modular) Good (modular) 

6. Mass transfer rates Low High High 

7. Cost High High Low 

8. Possibility of mid-separation 
tracking No No Yes 

9. Possibility of parallel analysis  No No Yes 

 

 



List of Figures 

Fig. 1. Photograph and cross section of a plastic Microcapillary Film (MCF) disc extruded 

from ethylene vinyl alcohol copolymer (EVOH), containing 32 mol% of ethylene. The mean 

internal diameter of microcapillaries in the cross section of the film in (b) is 142 ± 9.8 μm. 

Fig. 2. Experimental setup used for frontal analysis experiments in MCF-EVOH-SP. A 

Knauer HPLC sample pump C was used for loading of protein samples. 

Fig. 3. Frontal analysis experiment of hen egg lysozyme in MCF-EVOH-SP at a superficial 

flow velocity of 11.1 cm s-1. After proper initial equilibration, lysozyme was loaded to the 

column at 0.2 mg ml-1 in Tris-HCl buffer pH 7.2 with a HPLC sample pump and then washed 

with the running buffer and finally eluted with 1.0 M NaCl in a step gradient.  

Fig. 4. Effect of superficial flow velocity, uLS, on the (a) dynamic binding capacity of and (b) 

pressure drop, ∆P, across the MCF-EVOH-SP column. The pressure drop in laminar flow 

through a tube is given by Hagen- Poiseuille equation, ∆P = 32µ.L.uLS/(Ncdm
2), where µ is the 

liquid viscosity, L the column length, Nc the number of microcapillaries and dm the mean 

equivalent diameter of the microcapillaries.  

Fig. 5. Langmuir isotherm analysis of ligand binding density in the MCF-EVOH-SP disc 

using hen lysozyme. The different values of protein mass bound, q, achieved at the different 

protein loading concentrations, C, are plotted (squares). The line representing the Langmuir 

isotherm equation can be seen to fit the data very well and gives an equilibrium saturation 

binding density, qmax, from equation (3) of 180 µg. 

Fig. 6. Application of MCF-EVOH-SP as a subtractive adsorbent matrix. The adsorption of 

lysozyme (pI 11) and BSA (pI 4.9) was tested at a superficial flow velocity of 11.1 cm s-1 

using 20 mM Tris-HCl (pH 6.0) as running buffer. Protein samples were injected into the 

plastic column using a 100 µl sample loop and washed with the running buffer before being 

eluted with a step gradient using 0.5 M NaCl. (a) Adsorption and elution of lysozyme at 0.5 



mg ml-1, (b) Breakthrough of 0.5 mg ml-1 of BSA though the column. (c) Adsorption and 

elution of lysozyme from a sample containing 0.5 mg ml-1 of lysozyme and 0.5 mg ml-1 of 

BSA. 

Fig. 7. SDS page of aliquots from subtractive ion-exchange separation of lysozyme from 

BSA as in Fig. 6(c). Samples were collected at the outlet of the disc in 1.0 ml fractions. 

Fig. 8. Ion-exchange separation of cytochrome-c (pI 9.3) and hen egg lysozyme (pI 11) in 

the MCF-EVOH-SP in 20 mM MES buffer (pH 6.0) at a superficial flow velocity of 11.1 cm s-

1. Protein samples were injected into the plastic column using a 100 µl sample loop and 

washed with the running buffer before being eluted with a linear gradient 0-0.5 M NaCl in 8 

ml (i.e. about 5.3 column volumes). (a) Adsorption and elution of 0.1 mg ml-1 cytochrome-c. 

(b) Adsorption and elution of 0.1 mg ml-1 lysozyme. (c) Separation of cytochrome-c and 

lysozyme from a protein sample containing 0.1 mg ml-1 of cytochrome-c and 0.1 mg ml-1 of 

lysozyme. 

Fig. 9. SDS page of aliquots from ion-exchange separation of cytochrome-c and lysozyme in 

the MCF-EVOH-SP as seen in Fig. 8(c). 
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Fig. 5. 
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Fig. 6. 
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Fig. 8. 
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