65 research outputs found

    RCAN1 regulates vesicle recycling and quantal release kinetics via effects on calcineurin activity

    Get PDF
    Author version made available in accordance with the publisher's policy.We have previously shown that Regulator of Calcineurin 1 (RCAN1) regulates multiple stages of vesicle exocytosis. However, the mechanisms by which RCAN1 affects secretory vesicle exocytosis and quantal release kinetics remain unknown. Here we use carbon fiber amperometry to detect exocytosis from chromaffin cells and identify these underlying mechanisms. We observe reduced exocytosis with repeated stimulations in chromaffin cells overexpressing RCAN1 (RCAN1ox), but not in wild type (WT) cells, indicating a negative effect of RCAN1 on vesicle recycling and endocytosis. Acute exposure to calcineurin inhibitors, cyclosporine A and FK-506, replicates this effect in WT cells but has no additional effect in RCAN1ox cells. When we chronically expose WT cells to cyclosporine A and FK-506 we find that catecholamine release per vesicle and pre-spike foot (PSF) signal parameters are decreased, similar to that in RCAN1ox cells. Inhibiting calcineurin activity in RCAN1ox cells has no additional effect on the amount of catecholamine release per vesicle but further reduces PSF signal parameters. Electron microscopy studies indicate these changes are not due to altered vesicle number or distribution in RCAN1ox cells but reduced vesicle release may be cause by decreased vesicle and dense core size in RCAN1ox cells. Thus, our results indicate that RCAN1 may negatively affects vesicle recycling and quantal release kinetics via the inhibition of calcineurin activity

    Semi-Automated Recording of Facial Sensitivity in Rat Demonstrates Antinociceptive Effects of the Anti-CGRP Antibody Fremanezumab

    Get PDF
    Migraine pain is frequently accompanied by cranial hyperalgesia and allodynia. Calcitonin gene-related peptide (CGRP) is implicated in migraine pathophysiology but its role in facial hypersensitivity is not entirely clear. In this study, we investigated if the anti-CGRP monoclonal antibody fremanezumab, which is therapeutically used in chronic and episodic migraines, can modify facial sensitivity recorded by a semi-automatic system. Rats of both sexes primed to drink from a sweet source had to pass a noxious mechanical or heat barrier to reach the source. Under these experimental conditions, animals of all groups tended to drink longer and more when they had received a subcutaneous injection of 30 mg/kg fremanezumab compared to control animals injected with an isotype control antibody 12–13 days prior to testing, but this was significant only for females. In conclusion, anti-CGRP antibody, fremanezumab, reduces facial sensitivity to noxious mechanical and thermal stimulation for more than one week, especially in female rats. Anti-CGRP antibodies may reduce not only headache but also cranial sensitivity in migraineurs

    Project-based learning - area of improving the quality of school

    Get PDF
    U traženju najboljih načina za ostvarivanje ciljeva nastave, jedno od mogućih didaktičkih rješenja pronalazimo u projektnoj nastavi. Ravitz i sur. (2012) opisuju projektnu nastavu kao koncept stvaranja uvjeta u kojima učenici mogu učiti složenija znanja i vještine koja su im nepohodna za život u 21. stoljeću. Ona predstavlja brojne izazove za učitelje i škole, a poteškoće na koje nailaze pri njezinoj implementaciji su brojne. Za učinkovito rješavanje problema implementacije projektne nastave u radu škole, neophodno je omogućiti učiteljima samovrednovanje nastavnog procesa. Samovrednovanje je proces koji sustavno prati, analizira i procjenjuje uspješnost rada kako bi se trajno unaprijedila kvaliteta i stvorilo poticajno radno okruženje. U ovom je radu prikazan primjer Školskog razvojnog plana, kao sastavnog dijela procesa samovrednovanja, kojim je projektna nastava definirana kao prioritetno područje unaprjeđenja rada škole i razvojnih ciljeva koji proizlaze iz njih.In finding the best ways to accomplish learning goals one of the possible didactic solutions would be project-based learning. Ravitz et al. (2012) describe project-based learning as a concept that involves creating conditions which would help students learn more complex knowledge and skills vital for the life in the 21st century. This concept holds many challenges for both teachers and schools, and many issues arise in its implementation. The effective solution for the implementation problems of project-based learning in schools necessary involves self-evaluation of the teaching process. Self-evaluation is a process that systematically monitors, analyses and assesses the work performance in order to permanently achieve better quality and create a more productive working surroundings. This paper shows an example of a school development plan, as an integral part of the self-evaluation process, that defines the project-based learning as a priority area in improving the school processes and development goals which derive from them

    RCAN1 Regulates Mitochondrial Function and Increases Susceptibility to Oxidative Stress in Mammalian Cells

    Get PDF
    Copyright © 2014 Heshan Peiris et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Mitochondria are the primary site of cellular energy generation and reactive oxygen species (ROS) accumulation. Elevated ROS levels are detrimental to normal cell function and have been linked to the pathogenesis of neurodegenerative disorders such as Down's syndrome (DS) and Alzheimer’s disease (AD). RCAN1 is abundantly expressed in the brain and overexpressed in brain of DS and AD patients. Data from nonmammalian species indicates that increased RCAN1 expression results in altered mitochondrial function and that RCAN1 may itself regulate neuronal ROS production. In this study, we have utilized mice overexpressing RCAN1 and demonstrate an increased susceptibility of neurons from these mice to oxidative stress. Mitochondria from these mice are more numerous and smaller, indicative of mitochondrial dysfunction, and mitochondrial membrane potential is altered under conditions of oxidative stress. We also generated a PC12 cell line overexpressing RCAN1 . Similar to neurons, cells have an increased susceptibility to oxidative stress and produce more mitochondrial ROS. This study demonstrates that increasing RCAN1 expression alters mitochondrial function and increases the susceptibility of neurons to oxidative stress in mammalian cells. These findings further contribute to our understanding of RCAN1 and its potential role in the pathogenesis of neurodegenerative disorders such as AD and DS

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    Aging Differentially Affects Multiple Aspects of Vesicle Fusion Kinetics

    Get PDF
    How fusion pore formation during exocytosis affects the subsequent release of vesicle contents remains incompletely understood. It is unclear if the amount released per vesicle is dependent upon the nature of the developing fusion pore and whether full fusion and transient kiss and run exocytosis are regulated by similar mechanisms. We hypothesise that if consistent relationships exist between these aspects of exocytosis then they will remain constant across any age. Using amperometry in mouse chromaffin cells we measured catecholamine efflux during single exocytotic events at P0, 1 month and 6 months. At all ages we observed full fusion (amperometric spike only), full fusion preceded by fusion pore flickering (pre-spike foot (PSF) signal followed by a spike) and pure “kiss and run” exocytosis (represented by stand alone foot (SAF) signals). We observe age-associated increases in the size of all 3 modes of fusion but these increases occur at different ages. The release probability of PSF signals or full spikes alone doesn't alter across any age in comparison with an age-dependent increase in the incidence of “kiss and run” type events. However, the most striking changes we observe are age-associated changes in the relationship between vesicle size and the membrane bending energy required for exocytosis. Our data illustrates that vesicle size does not regulate release probability, as has been suggested, that membrane elasticity or flexural rigidity change with age and that the mechanisms controlling full fusion may differ from those controlling “kiss and run” fusion

    The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroimaging researchers have developed rigorous community data and metadata standards that encourage meta-analysis as a method for establishing robust and meaningful convergence of knowledge of human brain structure and function. Capitalizing on these standards, the BrainMap project offers databases, software applications, and other associated tools for supporting and promoting quantitative coordinate-based meta-analysis of the structural and functional neuroimaging literature.</p> <p>Findings</p> <p>In this report, we describe recent technical updates to the project and provide an educational description for performing meta-analyses in the BrainMap environment.</p> <p>Conclusions</p> <p>The BrainMap project will continue to evolve in response to the meta-analytic needs of biomedical researchers in the structural and functional neuroimaging communities. Future work on the BrainMap project regarding software and hardware advances are also discussed.</p
    • …
    corecore