24 research outputs found

    Strength asymmetry increases gait asymmetry and variability in older women.

    Get PDF
    Purpose—The aim of the research was to determine how knee extensor strength asymmetry influences gait asymmetry and variability since these gait parameters have been related to mobility and falls in older adults. Methods—Strength of the knee extensors was measured in 24 older women (65 – 80 yr). Subjects were separated into symmetrical strength (SS, n = 13) and asymmetrical strength (SA, n = 11) groups using an asymmetry cutoff of 20%. Subjects walked at a standard speed of 0.8 m s−1 and at maximal speed on an instrumented treadmill while kinetic and spatiotemporal gait variables were measured. Gait and strength asymmetry were calculated as the percent difference between legs and gait variability as the coefficient of variation over twenty sequential steps. Results—SA had greater strength asymmetry (27.4 ± 5.5%) than SS (11.7 ± 5.4%, P \u3c 0.001). Averaged across speeds, SA had greater single (7.1% vs. 2.5%) and double-limb support time asymmetry (7.0 vs. 4.3%) than SS and greater single-limb support time variability (9.7% vs. 6.6%, all P \u3c 0.05). Group × speed interactions occurred for weight acceptance force variability (P = 0.02) and weight acceptance force asymmetry (P = 0.017) with greater variability at the maximal speed in SA (5.0 ± 2.4% vs. 3.7 ± 1.2%) and greater asymmetry at the maximal speed in SA (6.4 ± 5.3% vs. 2.5 ± 2.3%). Conclusion—Gait variability and asymmetry are greater in older women with strength asymmetry and increase when they walk near their maximal capacities. The maintenance of strength symmetry, or development of symmetry through unilateral exercise, may be beneficial in reducing gait asymmetry, gait variability, and fall risk in older adults

    Analysis of step kinematics during maximum speed of 60 m sprint performance

    Get PDF
    The purpose of this study was to examine the step kinematics variables (step length, step frequency, ground contact time, flight time, and step velocity) of maximum speed measured during 60 m sprint performance from starting block. Two groups of seven fast (best 100-m time: 10.37 ± 0.04 s) and seven sub-fast (best 100-m time: 10.71 ± 0.15 s) sprinters were recruited. Step kinematics were extracted from the first nine running steps of the 20-m sprint (between 40-60 m) of 60 m sprint performance form the block using the Opto-Jump–Microgate system (Opto Jump, Italy). It can be clearly seen that the average time of the flight phase, the frequency and length of the step showed significant statistical differences between the groups. Our experiment did not show significant changes in CT and FT in either group of sprinters and showed a relatively linear course from step two to step eight . The velocity of step execution in the fast sprinters showed a linear increase across steps one to nine however no changes in SL between step four and seven was noticed when compared with earlier steps three and six. In turn, the sub-fast sprinters showed more pronounced variation in SV and SL, which may explain the slower running velocity in this group of sprinters. Analysis of the obtained results may be of great importance for coaches. In order to reach a higher value of maximal sprinting speed the optimal interaction between each variables is noteworthy

    Diagnostics of tissue involved injury occurrence of top-level judokas during the competition: suggestion for prevention

    Get PDF
    Background Judo, as a high-intensity contact sport, may lead to the occurrence of injuries, especially in competitions. This work aims to assess the likelihood of soft and hard tissue injuries in top-level judokas during competition with defining factors that determine the probability of injury occurrence. Methods The injuries that occurred in 123 official international competitions from 2005–2019 were recorded by the European Judo Union (EJU) Medical Commission as a survey that was a part of the EJU Injury Registration form with internal consistency shown by a Crombach Alpha of 0.69. This survey data identified factors such as: sex, anatomical localisation of injury, type of injury, tissue involved and mechanisms of the injury. A total of 650 tissue injuries were reported correctly in terms of tissue injury definition. Results The most frequent soft tissue injury (STI) reported was a ligament STI (48.15%), closely followed by skin STI (12.15%) and muscles STI (11.38%). In turn, the most frequent hard tissue injury occurred in bones (8.56%). The highest rates of injuries occurred during the fight in the standing position (78%). Injuries in the standing position mainly occurred while executing a throw (25.85%) and followed by the attempt to throw, i.e., the action of reaching the throwing position (22.30%), grip fighting (15.07%), and during falls (14.77%). Opposite to this, fight in groundwork reached only 18.30% soft and hard tissue injuries combined. The ongoing registration of injuries during judo combat and training and the early diagnosis of risk factors for injuries are the basis for the development of effective strategies for injury prevention and further treatment

    Correction: Mackala et al. Evaluation of the Pre-Planned and Non-Planed Agility Performance: Comparison between Individual and Team Sports. Int. J. Environ. Res. Public Health 2020,17, 975.

    Get PDF
    © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Peer reviewe

    The Effect of Height on Drop Jumps in Relation to Somatic Parameters and Landing Kinetics

    Get PDF
    selected somatic parameters on the landing kinetics of rebound jumps in force and power production, performed by male and female student athletes. Twenty female and forty male students with a sports background participated in the experiment (mean and standard deviation (± SD): age 20.28 ± 1.31 years, height 166.78 ± 5.29 cm, mass 62.23 ± 7.21 kg and 21.18 ± 1.29, 182.18 ± 6.43, 78.65 ± 7.09). Each participant performed three maximal jumps on two independent and synchronized force platforms (Bilateral Tensiometric Platform S2P) at each of the two assigned drop-jump heights (20-, and 40-, cm for female and 30-, and 60-, cm for the male special platform). Significant between-sex differences were observed in all variables of selected somatics, with men outperforming women. Statistically significant differences were noted in four parameters, between men and women, in both DJs from 20/40 and 30/60 cm. The height of the jump was 6 cm and 4 cm higher for men. A slightly higher statistical significance (p = 0.011) was demonstrated by the relative strength (% BW) generated by the left limb in both men and women. Only women showed a significant relationship between body mass, body height, and five parameters, dropping off of a 20 cm box. In men, only the left leg—relative maximal F (p =−0.45)—showed a relationship with body mass. There were no relationships between the above-mentioned dependencies in both groups, in jumps from a higher height: 40 cm and 60 cm. From a practical application, the DJ with lower 20/30 cm or higher 40/60 cm (women/men) respectively emphasizes either the force or power output via an increase in the velocity component of the rebound action or increased height of the DJ jump

    Impact of marathon performance on muscles stiffness in runners over 50 years old

    Get PDF
    IntroductionThe research examines the relationship between marathon performance and muscle stiffness changes from pre to marathon in recreational runners aged 50+ years.MethodsThirty-one male long-distance runners aged 50–73 years participated in the experiment. The muscle stiffness of quadriceps and calves was measured in two independent sessions: the day before the marathon and 30 min after the completed marathon run using a Myoton device.Results and DiscussionThe 42.195-km run was completed in 4.30,05 h ± 35.12 min, which indicates an intensity of 79.3% ± 7.1% of HRmax. The long-term, low-intensity running exercise (marathon) in older recreational runners and the low level of HRmax and VO2max showed no statistically significant changes in muscle stiffness (quadriceps and calves). There was reduced muscle stiffness (p = 0.016), but only in the triceps of the calf in the dominant (left) leg. Moreover, to optimally evaluate the marathon and adequately prepare for the performance training program, we need to consider the direct and indirect analyses of the running economy, running technique, and HRmax and VO2max variables. These variables significantly affect marathon exercise

    The Effect of Height on Drop Jumps in Relation to Somatic Parameters and Landing Kinetics

    No full text
    The aim of this study was to assess the effect of drop height and selected somatic parameters on the landing kinetics of rebound jumps in force and power production, performed by male and female student athletes. Twenty female and forty male students with a sports background participated in the experiment (mean and standard deviation (± SD): age 20.28 ± 1.31 years, height 166.78 ± 5.29 cm, mass 62.23 ± 7.21 kg and 21.18 ± 1.29, 182.18 ± 6.43, 78.65 ± 7.09). Each participant performed three maximal jumps on two independent and synchronized force platforms (Bilateral Tensiometric Platform S2P) at each of the two assigned drop-jump heights (20-, and 40-, cm for female and 30-, and 60-, cm for the male special platform). Significant between-sex differences were observed in all variables of selected somatics, with men outperforming women. Statistically significant differences were noted in four parameters, between men and women, in both DJs from 20/40 and 30/60 cm. The height of the jump was 6 cm and 4 cm higher for men. A slightly higher statistical significance (p = 0.011) was demonstrated by the relative strength (% BW) generated by the left limb in both men and women. Only women showed a significant relationship between body mass, body height, and five parameters, dropping off of a 20 cm box. In men, only the left leg—relative maximal F (p =−0.45)—showed a relationship with body mass. There were no relationships between the above-mentioned dependencies in both groups, in jumps from a higher height: 40 cm and 60 cm. From a practical application, the DJ with lower 20/30 cm or higher 40/60 cm (women/men) respectively emphasizes either the force or power output via an increase in the velocity component of the rebound action or increased height of the DJ jump

    A Kinematic Analysis of Three Best 100 m Performances Ever

    No full text
    The purpose of this investigation was to compare and determine the relevance of the morphological characteristics and variability of running speed parameters (stride length and stride frequency) between Usain Bolt’s three best 100 m performances. Based on this, an attempt was made to define which factors determine the performance of Usain Bolt's sprint and, therefore, distinguish him from other sprinters. We analyzed the previous world record of 9.69 s set in the 2008 Beijing Olympics, the current record of 9.58 s set in the 2009 Berlin World Championships in Athletics and the O lympic record of 9.63 s set in 2012 London Olympics Games by Usain Bolt. The application of VirtualDub Programme allowed the acquisition of basic kinematical variables such as step length and step frequency parameters of 100 m sprint from video footage provided by NBC TV station, BBC TV station. This data was compared with other data available on the web and data published by the Scientific Research Project Office responsible on behalf of IAAF and the German Athletics Association (DVL). The main hypothesis was that the step length is the main factor that determines running speed in the 10 and 20 m sections of the entire 100 m distance. Bolt’s anthropometric advantage (body height, leg length and liner body) is not questionable and it is one of the factors that makes him faster than the rest of the finalists from each three competitions. Additionally, Bolt’s 20 cm longer stride shows benefit in the latter part of the race. Despite these factors, he is probably able to strike the ground more forcefully than rest of sprinters, relative to their body mass, therefore, he might maximize his time on the ground and to exert the same force over this period of time. This ability, combined with longer stride allows him to create very high running speed - over 12 m/s (12.05 -12.34 m/s) in some 10 m sections of his three 100 m performances. These assumption confirmed the application of Ballerieich's formula for speed development. In most 10 m sections of the 100 m sprint, the step length was the parameter that significantly determined the increase of maximal running speed, therefore, distinguishing Bolt from the other finalists.peerReviewe

    Developing a Model of Risk Factors of Injury in Track and Field Athletes

    No full text
    This work aimed to develop a model to assess the likelihood of injury in track and field athletes, and to establish which factors have the greatest impact. Tests verifying their significance were also reviewed, as well as the method for selecting variables. The key element was to confirm the quality of the classification system and to test the impact of individual factors on the likelihood of injury. The survey was carried out among physically active participants who take part in track and field sporting disciplines. The Cronbach’s alpha was 0.73, which can be considered an acceptable value for the survey. The seven most important factors influencing the risk of injury were selected from a group of twenty-four and were used to create the model. The Nagelkerke’s R2 reached 0.630 for the logit model, which indicates a good effect of the independent variables. The data suggested that the largest factor influencing the risk of injury was the number of prior injuries

    UPOREDNA ANALIZA KRETANJA GOLF PALICE PRILIKOM SUDARA SA LOPTICOM

    No full text
    The purpose of the study was to investigate clubhead kinematics during the impact phase of a golf swing. Three highly skilled golfers of a distinguished body type were instructed to perform driver, 6-iron and pitching wedge trials. A high-speed imaging system was used to capture the clubhead motion near the impact. Conventional golf swing parameters were analysed for comparison. Additionally, a circular arc was fitted to the clubhead path, and the moving trihedron was introduced as a reference frame for observing the clubhead rotation. Despite differences in their body type, golfers achieved comparable clubhead speed, while the radius of the fitted circular arc was in a narrow range. The moving trihedron, together with conventional parameters of the golf swing, enabled additional insight to the clubhead motion and clubface orientation. Individual swing characteristics, which result in the clubhead motion prior to impact, could clearly be observed, enabling improvement of the golfer’s swing technique.Svrha studije bila je da se istraži kinematika glave štapa u toku udarne faze zamaha u golfu. Tri profesionalna golfera različite morfologije izvršilo je udarce po loptici “driver”, “6-iron” i “pitching wedge” tehnikom. Sistem za snimanje pokreta velike brzine korišćen je za praćenje kretanja glave štapa neposredno pred udarac. Konvencionalni parametri zamaha u golfu korišćeni su za uporednu analizu. Pored toga, kružni luk je postavljen na trajektoriju glave štapa, a pokretni trojedar je uveden kao referentni okvir za posmatranje rotacije glave štapa. Uprkos razlikama u morfologiji, golferi su postigli približno istu brzinu glave palice, dok je radijus kružnog luka bio u uskom rasponu. Pomični trojedar, zajedno sa konvencionalnim parametrima golf zamaha omogućio je dodatni uvid u kretanje glave štapa i orijentaciju štapa u prostoru. Jasno su uočljive pojedinačne karakteristike zamaha, što omogućuje poboljšanje tehnike zamaha golfera
    corecore