6,100 research outputs found

    Large-Scale Radio Structure in the Universe: Giant Radio Galaxies

    Full text link
    Giant radio galaxies (GRGs), with linear sizes larger than 1 Mpc (H0=50 km/s/Mpc), represent the biggest single objects in the Universe. GRGs are rare among the entire population of radio galaxies (RGs) and their physical evolution is not well understood though for many years they have been of special interest for several reasons. The lobes of radio sources can compress cold gas clumps and trigger star or even dwarf galaxy formation, they can also transport gas from a host galaxy to large distances and seed the IGM with magnetic fields. Since GRGs have about 10 to 100 times larger sizes than normal RGs, their influence on the ambient medium is correspondingly wider and is pronounced on scales comparable to those of clusters of galaxies or larger. Therefore `giants' could play an important role in the process of large-scale structure formation in the Universe. Recently, thanks to the new all sky radio surveys, significant progress in searching for new GRGs has been made.Comment: To appear in Multiwavelength AGN Surveys, ed. R. Maiolino and R. Mujica, Singapore: World Scientific, 2004, 2 page

    Corrections to Universal Fluctuations in Correlated Systems: the 2D XY-model

    Full text link
    Generalized universality, as recently proposed, postulates a universal non-Gaussian form of the probability density function (PDF) of certain global observables for a wide class of highly correlated systems of finite volume N. Studying the 2D XY -model, we link its validity to renormalization group properties. It would be valid if there were a single dimension 0 operator, but the actual existence of several such operators leads to T-dependent corrections. The PDF is the Fourier transform of the partition function Z(q) of an auxiliary theory which differs by a dimension 0 perturbation with a very small imaginary coefficient iq/N from a theory which is asymptotically free in the infrared. We compute the PDF from a systematic loop expansion of ln Z(q).Comment: To be published in Phys. Rev.

    Effective Field Theories

    Get PDF
    Effective field theories encode the predictions of a quantum field theory at low energy. The effective theory has a fairly low ultraviolet cutoff. As a result, loop corrections are small, at least if the effective action contains a term which is quadratic in the fields, and physical predictions can be read straight from the effective Lagrangean. Methods will be discussed how to compute an effective low energy action from a given fundamental action, either analytically or numerically, or by a combination of both methods. Basically,the idea is to integrate out the high frequency components of fields. This requires the choice of a "blockspin",i.e. the specification of a low frequency field as a function of the fundamental fields. These blockspins will be the fields of the effective field theory. The blockspin need not be a field of the same type as one of the fundamental fields, and it may be composite. Special features of blockspins in nonabelian gauge theories will be discussed in some detail. In analytical work and in multigrid updating schemes one needs interpolation kernels \A from coarse to fine grid in addition to the averaging kernels CC which determines the blockspin. A neural net strategy for finding optimal kernels is presented. Numerical methods are applicable to obtain actions of effective theories on lattices of finite volume. The constraint effective potential) is of particular interest. In a Higgs model it yields the free energy, considered as a function of a gauge covariant magnetization. Its shape determines the phase structure of the theory. Its loop expansion with and without gauge fields can be used to determine finite size corrections to numerical data.Comment: 45 pages, 9 figs., preprint DESY 92-070 (figs. 3-9 added in ps format

    Oscillatory Spin Polarization and Magneto-Optic Kerr Effect in Fe3O4 Thin Films on GaAs(001)

    Full text link
    The spin dependent properties of epitaxial Fe3O4 thin films on GaAs(001) are studied by the ferromagnetic proximity polarization (FPP) effect and magneto-optic Kerr effect (MOKE). Both FPP and MOKE show oscillations with respect to Fe3O4 film thickness, and the oscillations are large enough to induce repeated sign reversals. We attribute the oscillatory behavior to spin-polarized quantum well states forming in the Fe3O4 film. Quantum confinement of the t2g states near the Fermi level provides an explanation for the similar thickness dependences of the FPP and MOKE oscillations.Comment: to appear in Phys. Rev. Let

    Construction of Field Algebras with Quantum Symmetry from Local Observables

    Full text link
    It has been discussed earlier that ( weak quasi-) quantum groups allow for conventional interpretation as internal symmetries in local quantum theory. From general arguments and explicit examples their consistency with (braid-) statistics and locality was established. This work addresses to the reconstruction of quantum symmetries and algebras of field operators. For every algebra \A of observables satisfying certain standard assumptions, an appropriate quantum symmetry is found. Field operators are obtained which act on a positive definite Hilbert space of states and transform covariantly under the quantum symmetry. As a substitute for Bose/Fermi (anti-) commutation relations, these fields are demonstrated to obey local braid relation.Comment: 50 pages, HUTMP 93-B33

    On Renormalization Group Flows and Polymer Algebras

    Get PDF
    In this talk methods for a rigorous control of the renormalization group (RG) flow of field theories are discussed. The RG equations involve the flow of an infinite number of local partition functions. By the method of exact beta-function the RG equations are reduced to flow equations of a finite number of coupling constants. Generating functions of Greens functions are expressed by polymer activities. Polymer activities are useful for solving the large volume and large field problem in field theory. The RG flow of the polymer activities is studied by the introduction of polymer algebras. The definition of products and recursive functions replaces cluster expansion techniques. Norms of these products and recursive functions are basic tools and simplify a RG analysis for field theories. The methods will be discussed at examples of the Φ4\Phi^4-model, the O(N)O(N) σ\sigma-model and hierarchical scalar field theory (infrared fixed points).Comment: 32 pages, LaTeX, MS-TPI-94-12, Talk presented at the conference ``Constructive Results in Field Theory, Statistical Mechanics and Condensed Matter Physics'', 25-27 July 1994, Palaiseau, Franc

    Horses with equine recurrent uveitis have an activated CD4+ T-cell phenotype that can be modulated by mesenchymal stem cells in vitro.

    Get PDF
    Equine recurrent uveitis (ERU) is an immune-mediated disease causing repeated or persistent inflammatory episodes which can lead to blindness. Currently, there is no cure for horses with this disease. Mesenchymal stem cells (MSCs) are effective at reducing immune cell activation in vitro in many species, making them a potential therapeutic option for ERU. The objectives of this study were to define the lymphocyte phenotype of horses with ERU and to determine how MSCs alter T-cell phenotype in vitro. Whole blood was taken from 7 horses with ERU and 10 healthy horses and peripheral blood mononuclear cells were isolated. The markers CD21, CD3, CD4, and CD8 were used to identify lymphocyte subsets while CD25, CD62L, Foxp3, IFNγ, and IL10 were used to identify T-cell phenotype. Adipose-derived MSCs were expanded, irradiated (to control proliferation), and incubated with CD4+ T-cells from healthy horses, after which lymphocytes were collected and analyzed via flow cytometry. The percentages of T-cells and B-cells in horses with ERU were similar to normal horses. However, CD4+ T-cells from horses with ERU expressed higher amounts of IFNγ indicating a pro-inflammatory Th1 phenotype. When co-incubated with MSCs, activated CD4+ T-cells reduced expression of CD25, CD62L, Foxp3, and IFNγ. MSCs had a lesser ability to decrease activation when cell-cell contact or prostaglandin signaling was blocked. MSCs continue to show promise as a treatment for ERU as they decreased the CD4+ T-cell activation phenotype through a combination of cell-cell contact and prostaglandin signaling

    Epitaxial EuO Thin Films on GaAs

    Full text link
    We demonstrate the epitaxial growth of EuO on GaAs by reactive molecular beam epitaxy. Thin films are grown in an adsorption-controlled regime with the aid of an MgO diffusion barrier. Despite the large lattice mismatch, it is shown that EuO grows well on MgO(001) with excellent magnetic properties. Epitaxy on GaAs is cube-on-cube and longitudinal magneto-optic Kerr effect measurements demonstrate a large Kerr rotation of 0.57{\deg}, a significant remanent magnetization, and a Curie temperature of 69 K.Comment: 5 pages, 3 figure

    Water and sewage disposal for farm homes

    Get PDF
    March, 1939
    corecore