9 research outputs found

    Arrhythmic risk prediction in arrhythmogenic right ventricular cardiomyopathy : external validation of the arrhythmogenic right ventricular cardiomyopathy risk calculator

    Get PDF
    Aims: Arrhythmogenic right ventricular cardiomyopathy (ARVC) causes ventricular arrhythmias (VAs) and sudden cardiac death (SCD). In 2019, a risk prediction model that estimates the 5-year risk of incident VAs in ARVC was developed (ARVCrisk.com). This study aimed to externally validate this prediction model in a large international multicentre cohort and to compare its performance with the risk factor approach recommended for implantable cardioverter-defibrillator (ICD) use by published guidelines and expert consensus. Methods and results: In a retrospective cohort of 429 individuals from 29 centres in North America and Europe, 103 (24%) experienced sustained VA during a median follow-up of 5.02 (2.05-7.90) years following diagnosis of ARVC. External validation yielded good discrimination [C-index of 0.70 (95% confidence interval-CI 0.65-0.75)] and calibration slope of 1.01 (95% CI 0.99-1.03). Compared with the three published consensus-based decision algorithms for ICD use in ARVC (Heart Rhythm Society consensus on arrhythmogenic cardiomyopathy, International Task Force consensus statement on the treatment of ARVC, and American Heart Association guidelines for VA and SCD), the risk calculator performed better with a superior net clinical benefit below risk threshold of 35%. Conclusion: Using a large independent cohort of patients, this study shows that the ARVC risk model provides good prognostic information and outperforms other published decision algorithms for ICD use. These findings support the use of the model to facilitate shared decision making regarding ICD implantation in the primary prevention of SCD in ARVC

    Arrhythmic risk prediction in arrhythmogenic right ventricular cardiomyopathy: external validation of the arrhythmogenic right ventricular cardiomyopathy risk calculator

    Get PDF
    Aims Arrhythmogenic right ventricular cardiomyopathy (ARVC) causes ventricular arrhythmias (VAs) and sudden cardiac death (SCD). In 2019, a risk prediction model that estimates the 5-year risk of incident VAs in ARVC was developed (ARVCrisk.com). This study aimed to externally validate this prediction model in a large international multicentre cohort and to compare its performance with the risk factor approach recommended for implantable cardioverter-defibrillator (ICD) use by published guidelines and expert consensus.Methods and results In a retrospective cohort of 429 individuals from 29 centres in North America and Europe, 103 (24%) experienced sustained VA during a median follow-up of 5.02 (2.05-7.90) years following diagnosis of ARVC. External validation yielded good discrimination [C-index of 0.70 (95% confidence interval-CI 0.65-0.75)] and calibration slope of 1.01 (95% CI 0.99-1.03). Compared with the three published consensus-based decision algorithms for ICD use in ARVC (Heart Rhythm Society consensus on arrhythmogenic cardiomyopathy, International Task Force consensus statement on the treatment of ARVC, and American Heart Association guidelines for VA and SCD), the risk calculator performed better with a superior net clinical benefit below risk threshold of 35%.Conclusion Using a large independent cohort of patients, this study shows that the ARVC risk model provides good prognostic information and outperforms other published decision algorithms for ICD use. These findings support the use of the model to facilitate shared decision making regarding ICD implantation in the primary prevention of SCD in ARVC

    Long-Term Arrhythmic and Nonarrhythmic Outcomes of Lamin A/C Mutation Carriers.

    No full text
    BACKGROUND Mutations in LMNA are variably expressed and may cause cardiomyopathy, atrioventricular block (AVB), or atrial arrhythmias (AAs) and ventricular arrhythmias (VA). Detailed natural history studies of LMNA-associated arrhythmic and nonarrhythmic outcomes are limited, and the prognostic significance of the index cardiac phenotype remains uncertain. OBJECTIVES This study sought to describe the arrhythmic and nonarrhythmic outcomes of LMNA mutation carriers and to assess the prognostic significance of the index cardiac phenotype. METHODS The incidence of AVB, AA, sustained VA, left ventricular systolic dysfunction (LVD) (= left ventricular ejection fraction ≤50%), and end-stage heart failure (HF) was retrospectively determined in 122 consecutive LMNA mutation carriers followed at 5 referral centers for a median of 7 years from first clinical contact. Predictors of VA and end-stage HF or death were determined. RESULTS The prevalence of clinical manifestations increased broadly from index evaluation to median follow-up: AVB, 46% to 57%; AA, 39% to 63%; VA, 16% to 34%; and LVD, 44% to 57%. Implantable cardioverter-defibrillators were placed in 59% of patients for new LVD or AVB. End-stage HF developed in 19% of patients, and 13% died. In patients without LVD at presentation, 24% developed new LVD, and 7% developed end-stage HF. Male sex (p = 0.01), nonmissense mutations (p = 0.03), and LVD at index evaluation (p = 0.004) were associated with development of VA, whereas LVD was associated with end-stage HF or death (p < 0.001). Mode of presentation (with isolated or combination of clinical features) did not predict sustained VA or end-stage HF or death. CONCLUSIONS LMNA-related heart disease was associated with a high incidence of phenotypic progression and adverse arrhythmic and nonarrhythmic events over long-term follow-up. The index cardiac phenotype did not predict adverse events. Genetic diagnosis and subsequent follow-up, including anticipatory planning for therapies to prevent sudden death and manage HF, is warranted

    Arrhythmic risk prediction in arrhythmogenic right ventricular cardiomyopathy: external validation of the arrhythmogenic right ventricular cardiomyopathy risk calculator

    Get PDF
    Arrhythmogenic right ventricular cardiomyopathy (ARVC) causes ventricular arrhythmias (VAs) and sudden cardiac death (SCD). In 2019, a risk prediction model that estimates the 5-year risk of incident VAs in ARVC was developed (ARVCrisk.com). This study aimed to externally validate this prediction model in a large international multicentre cohort and to compare its performance with the risk factor approach recommended for implantable cardioverter-defibrillator (ICD) use by published guidelines and expert consensus
    corecore