292 research outputs found

    Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance

    Get PDF
    The new generation of gravitational waves detectors require unprecedented levels of isolation from seismic noise. This article reviews the seismic isolation strategy and instrumentation developed for the Advanced LIGO observatories. It summarizes over a decade of research on active inertial isolation and shows the performance recently achieved at the Advanced LIGO observatories. The paper emphasizes the scientific and technical challenges of this endeavor and how they have been addressed. An overview of the isolation strategy is given. It combines multiple layers of passive and active inertial isolation to provide suitable rejection of seismic noise at all frequencies. A detailed presentation of the three active platforms that have been developed is given. They are the hydraulic pre-isolator, the single-stage internal isolator and the two-stage internal isolator. The architecture, instrumentation, control scheme and isolation results are presented for each of the three systems. Results show that the seismic isolation sub-system meets Advanced LIGO's stringent requirements and robustly supports the operation of the two detectors.Laser Interferometer Gravitational-Wave ObservatoryNational Science Foundation (U.S.

    Large-Scale Stable Isotope Alteration Around the Hydrothermal Carbonate-Replacement Cinco de Mayo Zn-Ag Deposit, Mexico

    Get PDF
    Carbonate-hosted hydrothermal deposits typically show narrow visible mineralogical and textural alteration halos, which inhibit exploration targeting. In contrast, hydrothermal modification of the country rock’s stable isotope composition usually extends far beyond the limited visible alteration. Hence, stable isotope studies should be an effective tool to aid exploration for carbonate-hosted deposits. Here we present new insight into the development of a large stable isotope alteration halo based on 910 O and C isotope analyses of carbonate veins and hydrothermally altered limestone hosting the Cinco de Mayo Pb-Zn-Ag (Au, Cu) carbonate replacement deposit (CRD), in Chihuahua, Mexico. Our results demonstrate that stable isotope alteration is consistent with reactive, magmatic fluid flow into unaltered limestone and represents a powerful tool for the characterization of these hydrothermal ore systems. Synmineralization veins are texturally and isotopically distinct from those formed during pre- and postmineralization diagenesis and fluid flow and show distinct gradients along the direction of mineralizing fluid flow: this appears to be a promising exploration vectoring tool. Downhole variations in wall-rock isotope values reveal aquifers and aquicludes and outline the principal hydrothermal flow paths. Furthermore, wall-rock δ18OVSMOW systematically decreases toward mineralization from ~23‰ to <17‰ over a distance of ~10 km, providing another vectoring tool. The extent of the stable isotope alteration halo likely reflects the overall fluid volume and areal extent of a fossil hydrothermal system, which may be expected to scale with the mineral endowment. This suggests that constraining the size, shape, and degree of isotopic alteration has direct application to mineral exploration by outlining the system and indicating the potential size of a deposit

    Drug-resistant genotypes and multi-clonality in Plasmodium falciparum analysed by direct genome sequencing from peripheral blood of malaria patients.

    Get PDF
    Naturally acquired blood-stage infections of the malaria parasite Plasmodium falciparum typically harbour multiple haploid clones. The apparent number of clones observed in any single infection depends on the diversity of the polymorphic markers used for the analysis, and the relative abundance of rare clones, which frequently fail to be detected among PCR products derived from numerically dominant clones. However, minority clones are of clinical interest as they may harbour genes conferring drug resistance, leading to enhanced survival after treatment and the possibility of subsequent therapeutic failure. We deployed new generation sequencing to derive genome data for five non-propagated parasite isolates taken directly from 4 different patients treated for clinical malaria in a UK hospital. Analysis of depth of coverage and length of sequence intervals between paired reads identified both previously described and novel gene deletions and amplifications. Full-length sequence data was extracted for 6 loci considered to be under selection by antimalarial drugs, and both known and previously unknown amino acid substitutions were identified. Full mitochondrial genomes were extracted from the sequencing data for each isolate, and these are compared against a panel of polymorphic sites derived from published or unpublished but publicly available data. Finally, genome-wide analysis of clone multiplicity was performed, and the number of infecting parasite clones estimated for each isolate. Each patient harboured at least 3 clones of P. falciparum by this analysis, consistent with results obtained with conventional PCR analysis of polymorphic merozoite antigen loci. We conclude that genome sequencing of peripheral blood P. falciparum taken directly from malaria patients provides high quality data useful for drug resistance studies, genomic structural analyses and population genetics, and also robustly represents clonal multiplicity

    Framing or Gaming? Constructing a Study to Explore the Impact of Option Presentation on Consumers

    Get PDF
    The manner in which choice is framed influences individuals’ decision-making. This research examines the impact of different decision constructs on decision-making by focusing on the more problematic decision constructs: the un-selected and pre-selected optout. The study employs eye-tracking with cued retrospective think-aloud (RTA) to combine quantitative and qualitative data. Eye-tracking will determine how long a user focuses on a decision construct before taking action. Cued RTA where the user will be shown a playback of their interaction will be used to explore their attitudes towards a decision construct and identify problematic designs. This pilot begins the second of a three phase study, which ultimately aims to develop a research model containing the theoretical constructs along with hypothesized causal associations between the constructs to reveal the impact of measures such as decision construct type, default value type and question framing have on the perceived value of the website and loyalty intentions

    Observation of a kilogram-scale oscillator near its quantum ground state

    Get PDF
    We introduce a novel cooling technique capable of approaching the quantum ground state of a kilogram-scale system—an interferometric gravitational wave detector. The detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) operate within a factor of 10 of the standard quantum limit (SQL), providing a displacement sensitivity of 10[superscript −18] m in a 100 Hz band centered on 150 Hz. With a new feedback strategy, we dynamically shift the resonant frequency of a 2.7 kg pendulum mode to lie within this optimal band, where its effective temperature falls as low as 1.4 μK, and its occupation number reaches about 200 quanta. This work shows how the exquisite sensitivity necessary to detect gravitational waves can be made available to probe the validity of quantum mechanics on an enormous mass scale.Alfred P. Sloan FoundationUnited States. National Aeronautics and Space AdministrationDavid & Lucile Packard FoundationResearch CorporationNational Science Foundation (U.S.

    First all-sky search for continuous gravitational waves from unknown sources in binary systems

    Get PDF
    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ∼2,254  h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the orbit from ∼0.6 × 10[superscript −3]  ls to ∼6,500  ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3 × 10[superscript −24] at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.National Science Foundation (U.S.)United States. National Aeronautics and Space AdministrationCarnegie TrustDavid & Lucile Packard FoundationResearch CorporationAlfred P. Sloan Foundatio

    Upper limits on the strength of periodic gravitational waves from PSR J1939+2134

    Get PDF
    The first science run of the LIGO and GEO gravitational wave detectors presented the opportunity to test methods of searching for gravitational waves from known pulsars. Here we present new direct upper limits on the strength of waves from the pulsar PSR J1939+2134 using two independent analysis methods, one in the frequency domain using frequentist statistics and one in the time domain using Bayesian inference. Both methods show that the strain amplitude at Earth from this pulsar is less than a few times 102210^{-22}.Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July 200

    Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers

    Get PDF
    We study frequency dependent (FD) input-output schemes for signal-recycling interferometers, the baseline design of Advanced LIGO and the current configuration of GEO 600. Complementary to a recent proposal by Harms et al. to use FD input squeezing and ordinary homodyne detection, we explore a scheme which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are sub-optimal among all possible input-output schemes, provide a global noise suppression by the power squeeze factor, while being realizable by using detuned Fabry-Perot cavities as input/output filters. At high frequencies, the two schemes are shown to be equivalent, while at low frequencies our scheme gives better performance than that of Harms et al., and is nearly fully optimal. We then study the sensitivity improvement achievable by these schemes in Advanced LIGO era (with 30-m filter cavities and current estimates of filter-mirror losses and thermal noise), for neutron star binary inspirals, and for narrowband GW sources such as low-mass X-ray binaries and known radio pulsars. Optical losses are shown to be a major obstacle for the actual implementation of these techniques in Advanced LIGO. On time scales of third-generation interferometers, like EURO/LIGO-III (~2012), with kilometer-scale filter cavities, a signal-recycling interferometer with the FD readout scheme explored in this paper can have performances comparable to existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation
    corecore