2,449 research outputs found

    Robustly stable feedback min-max model predictive control

    Get PDF
    Published versio

    Designing output-feedback predictive controllers by reverse-engineering existing LTI controllers

    Get PDF
    An approach to designing a constrained output-feedback predictive controller that has the same small-signal properties as a pre-existing output-feedback linear time invariant controller is proposed. Systematic guidelines are proposed to select an appropriate (non-unique) realization of the resulting state observer. A method is proposed to transform a class of offset-free reference tracking controllers into the combination of an observer, steady-state target calculator and predictive controller. The procedure is demonstrated with a numerical example.This work was supported by Engineering and Physical Sciences Research Council grant EP/G030308/1, the European Space Agency and EADS Astrium.This is the author's version of an article that has been published in IEEE Transactions on Automatic Control. Changes were made to this version by the publisher prior to publication. The final version of record is available at: http://dx.doi.org/10.1109/TAC.2013.2258781 (c) 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Feedback min-max model predictive control using a single linear program: robust stability and the explicit solution

    No full text
    In this paper we introduce a new stage cost and show that the use of this cost allows one to formulate a robustly stable feedback min-max model predictive control problem that can be solved using a single linear program. Furthermore, this is a multi-parametric linear program, which implies that the optimal control law is piecewise affine, and can be explicitly pre-computed so that the linear program does not have to be solved on-line. We assume that the plant model is known, is discrete-time and linear time-invariant, is subject to unknown but bounded state disturbances and that the states of the system are measured. Two numerical examples are presented; one of these is taken from the literature, so that a direct comparison of solutions and computational complexity with earlier proposals is possible. This is a preprint of an article published in International Journal of Robust and Nonlinea

    Bi-directional coordination of plug-in electric vehicles with economic model predictive control

    Get PDF
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. The emergence of plug-in electric vehicles (PEVs) is unveiling new opportunities to de-carbonise the vehicle parcs and promote sustainability in different parts of the globe. As battery technologies and PEV efficiency continue to improve, the use of electric cars as distributed energy resources is fast becoming a reality. While the distribution network operators (DNOs) strive to ensure grid balancing and reliability, the PEV owners primarily aim at maximising their economic benefits. However, given that the PEV batteries have limited capacities and the distribution network is constrained, smart techniques are required to coordinate the charging/discharging of the PEVs. Using the economic model predictive control (EMPC) technique, this paper proposes a decentralised optimisation algorithm for PEVs during the grid-To-vehicle (G2V) and vehicle-To-grid (V2G) operations. To capture the operational dynamics of the batteries, it considers the state-of-charge (SoC) at a given time as a discrete state space and investigates PEVs performance in V2G and G2V operations. In particular, this study exploits the variability in the energy tariff across different periods of the day to schedule V2G/G2V cycles using real data from the university's PEV infrastructure. The results show that by charging/discharging the vehicles during optimal time partitions, prosumers can take advantage of the price elasticity of supply to achieve net savings of about 63%

    Predictive control for spacecraft rendezvous in an elliptical orbit using an FPGA

    Get PDF
    A field programmable gate array (FPGA)-based predictive controller for a spacecraft rendezvous man{\oe}uvre is presented. A linear time varying prediction model is used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of man{\oe}uvres. The resulting constrained optimisation problems are solved using a primal dual interior point algorithm. The majority of the computational demand is in solving a set of linear equations at each iteration of this algorithm. To accelerate this operation, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft core processor. The system is demonstrated in closed loop by linking the FPGA with a simulation of the plant dynamics running in Simulink on a PC, using Ethernet.This work was supported by the Engineering and Physical Sciences Research Council (Grant EP/G030308/1) as well as industrial support from Xilinx, Mathworks and the European Space Agency.European Control Conference 2013 (ECC13), July 17-19, Zurich, Switzerlan

    Soft Constraints and Exact Penalty Functions in Model Predictive Control

    No full text
    One of the strengths of Model Predictive Control (MPC) is its ability to incorporate constraints in the control formulation. Often a disturbance drives the system into a region where the MPC problem is infeasible and hence no control action can be computed. Feasibility can be recovered by softening the constraints using slack variables. This approach does not necessarily guarantee that the constraints will be satisfied, if possible. Results from the theory of exact penalty functions can be used to guarantee constraint satisfaction. This paper describes a method for computing a lower bound for the constraint violation penalty weight of the exact penalty function. One can then guarantee that the soft-constrained MPC solution will be equal to the hard-constrained MPC solution for a bounded subset of initial states, control inputs and reference trajectories

    Predictive control using an FPGA with application to aircraft control

    Get PDF
    Alternative and more efficient computational methods can extend the applicability of MPC to systems with tight real-time requirements. This paper presents a “system-on-a-chip” MPC system, implemented on a field programmable gate array (FPGA), consisting of a sparse structure-exploiting primal dual interior point (PDIP) QP solver for MPC reference tracking and a fast gradient QP solver for steady-state target calculation. A parallel reduced precision iterative solver is used to accelerate the solution of the set of linear equations forming the computational bottleneck of the PDIP algorithm. A numerical study of the effect of reducing the number of iterations highlights the effectiveness of the approach. The system is demonstrated with an FPGA-inthe-loop testbench controlling a nonlinear simulation of a large airliner. This study considers many more manipulated inputs than any previous FPGA-based MPC implementation to date, yet the implementation comfortably fits into a mid-range FPGA, and the controller compares well in terms of solution quality and latency to state-of-the-art QP solvers running on a standard PC
    corecore