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Abstract 

This paper is concerned with the practical real-time im- 
plementability of robustly stable model predictive control 
(MPC) when constraints are present on the inputs and the 
states. We assume that the plant model is known, is discrete- 
time and linear time-invariant, is subject to unknown but 
bounded state disturbances and that the states of the sys- 
tem are measured. In this paper we introduce a new stage 
cost and show that the use of this cost allows one to for- 
mulate a robustly stable MPC problem that can be solved 
using a single linear program. Furthermore, this is a multi- 
parametric linear program, which implies that the receding 
horizon control (RHC) law is piecewise affine, and can be 
explicitly pre-computed, so that the linear program does not 
have to be solved on-line. 

Keywords: min-rnax problems, robust control, optimal 
control, receding horizon control, parametric programming, 
piecewise linear control 

1 Introduction 

In general, solving a feedback min-max problem subject 
to constraints and disturbances is computationally too de- 
manding for practical implementation. However, various at- 
tempts have been made at presenting solutions to this prob- 
lem. Most of these solutions appear to have come from the 
field of robust MPC [13, 151. 

I t  is by now also well-established that with polytopic dis- 
turbance bounds, a linear model and a convex cost, in order 
to solve finite horizon min-max problems it is sufficient to 
consider only the disturbance realisations that take on val- 
ues at the vertices of the disturbance set [ 161. 

As an alternative, in [3,4, 101 it is proposed that a dynamic- 
and parametric programming approach be used to obtain an 
explicit expression for the control law. Provided the stage 
cost is piecewise affine (e.g. if a 1-norm or -norm is used), 
a piecewise affine expression for the control law can be 
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computed off-line. However, stability is not proven for the 
stage and terminal costs proposed in [3,4] nor do the costs 
satisfy the stability conditions given in [ 14, s3.31 and [ 15, 
34.41. 

The main contribution of this paper is the introduction of 
a new type of stage cost that can be applied to the results 
presented in [3, 4, 10, 161 such that robust stability of the 
closed-loop system is guaranteed. In Section 2 we define 
in detail the feedback min-max problem that will be con- 
sidered in this paper and in Section 3 we review known re- 
quirements for a receding horizon controller to be robustly 
stable, and show how the newly-introduced stage cost sat- 
isfies these requirements. We also point out some advan- 
tages of this cost, over the cost proposed in [lo]. In Sec- 
tion 4 we show in detail how the finite-horizon feedback 
rnin-max problem can be solved as a single LP, using the 
results presented in [16], and point out its multi-parametric 
nature. The conclusions are given in Section 5. 
Notation: 1 1  . 11 denotes any norm, d(z,Z) := infyEz llz -y IJ  
for any set Z c IR", 1 := [l,  1, ... ,1]' is acolumn vector of 
appropriate length, := reads "is defined as" and =: reads 
"defines". For any set 2, ZN := Z x . . . x Z. - 

N times 

, 

2 Problem Formulation 

We consider a discrete-time, linear, time-invariant plant 

wherexk E IR" is the system state, Uk E IR" is the control in- 
put and Wk € W is a persistent disturbance that only takes on 
values in the polytope W c IR". It is assumed that the distur- 
bance Wk can jump between arbitrary values within W and 
that no stochastic description for it is postulated. Therefore, 
a worst-case approach is taken in this paper. It is assumed 
that (A,B) is stabilisable and that polytopic constraints on 
the state and input, that are either due to physical, safety 
and/or performance considerations, are also given: 
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We assume that W contains the origin and that X c Rn and 
U c IRm contain the origin in their interiors. 

Since a persistent, unknown disturbance is present, it is im- 
possible to drive the state to the origin. Instead, it is only 
possible to drive the system to a bounded target set T con- 
tained inside X. The goal is to obtain a (time-invariant) non- 
linear feedback control law u = ~ ( x )  such that the system is 
robustly steered to the target set, while also satisfying the 
state and input constraints, and minimising some worst case 
cost. 

In order to determine a suitable control law an optimal con- 
trol problem PN (defined below) with horizon N is solved. 
Let w := { W O ,  w1, . . . , W N -  1 } denote a disturbance sequence 
over the interval 0 to N - 1. Effective control in the pres- 
ence of the disturbance requires state feedback [15, 54.61, 
so that the decision variable in the optimal control problem 
(for a given initial state) is a control policy n defined by 

n:= {u(O),l.ll(.),...,CLN-l(.)}, (2) 

w h e r e u ( O ) E U a n d p k : X + U ,  k =  1 ,  ..., N-1;  u(0)  is 
a control action (since the current state is known) and each 
pk(.)  is a state feedback control law. Let @ ( k ; x , n ,  w) denote 
the solution to (1) at time k when the state is x at time 0, the 
control is determined by policy n (U = pk(x)  at event ( x , k ) ,  
i.e. state x, time k )  and the disturbance sequence is w. 

Given a target set (often also called terminal constraint set) 
T c X containing the origin, for each initial state x E X, let 
n ~ ( x )  denote the set of admissible policies, i.e. 

n/&) := { n  140) E U, P k ( @ ( k ; x , % W ) )  E U, 
$(k;x,n,w) E X, $(N;x,n,w) E T, 

Vk E { 1,. . . , N - l},Vw E W N }  (3) 

and let 
(4) 

denote the set of states in X that can be robustly steered 
(steered for all w E W N )  to the target set T in N steps. 

In order to define an optimal control problem, a cost VN(.)  
that is dependent on the policy n and current state x, but not 
dependent on w, is defined; the conventional choice is 

X N  := {x E x I r I N ( 3 C )  # S} 

where Xk := @(k;x,n,w) if k E (0  ,..., N } ,  Uk := 
pk(@( i ; x ,  n, w)) if k E { 1,. . . , N - 1)  and uo := u(0). 

The target set T, stage cost L( . )  and terminal cost F ( . )  have 
to satisfy certain conditions in order to ensure that the so- 
lution of the feedback min-max optimal control problem, 
when implemented in a receding horizon fashion, is robustly 
stabilising. These conditions will be set out in the following 
section. 
The feedback min-max optimal control problem PN can now 
be defined as 

PN(x)  : V$(x) := m,'" {VN(X,  n) I 7c E ~ N ( x )  } . (6) 

Let $,(x) =: {uG(x) ,pT( . ;x ) ,  . . . 
lution to PN(x), i.e. 

(.;x)} denote the so- 

7c;(x) := argmin{VN(x,n) I n E r I ~ ( x ) } ,  (7) 

where the notation p r ( . ; x )  shows the dependence of the op- 
timal policy on the current state x. 

It should be noted that the solution to problem P.N is fre- 
quently not unique - that is, there can be a whole set of 
minimisers, from which one must be selected. Thus the 
time-invariant, set-valued receding horizon control (RHC) 
law KN : XN -+ 2" (2' is the set of all subsets of U )  is de- 
fined by the first element of n ; ( ~ ) :  

KN(X) := Ui(X), VX E X N .  (8) 

Typically, but not always, u i ( x )  is a singleton. 

The feedback min-max problem PN defined in (6) is an in- 
finite dimensional optimisation problem and impossible to 
solve directly. However, methods for solving PN using finite 
dimensional optimisation techniques have been proposed 
in [3,4, 10, 161 and this paper can be seen as an'immediate 
extension of [ 161. 

Before proceeding, some comments regarding the choice of 
stage cost are in order. Robust stability can be guaranteed if 
the stage cost 

proposed in [lo, 141, is used. Though this choice of cost 
solves the stability problem, it should be noted that (9) is not 
continuous (on the boundary of T). The use of such a dis- 
continuous stage cost is a major obstacle to implementation 
using standard solvers for linear, quadratic, semi-definite or 
other smooth, convex nonlinear programming problems. As 
such, a new cost (defined below) is proposed as an alterna- 
tive that solves the problem of obtaining a continuous stage 
cost that can be implemented using smooth, convex pro- 
gramming solvers, while still guaranteeing robust stability 
of the closed-loop system. 

In this paper, we introduce a new type of stage cost: 

L ( x , u )  := minIIQ(x-u)IIp+ IIR(u-Kx)II,, (10) 

where Q E RnXn and R E RmXm are weights, K E ElmXn is 
a linear feedback gain and T C JR" is a polytope contain- 
ing the origin. We will show that, if p = 1 or p = 00, the 
use of this stage cost allows the robustly stable feedback 
min-max MPC problem to be solved using a single linear 
program (LP). Furthermore, we will show that this LP is in 
fact a multi-parametric LP (mp-LP), that allows the RHC 
law KN(. )  to be pre-computed off-line along the lines devel- 
oped in [2, 51, and from which it follows that this law is in 
fact piecewise affine. These facts make robust MPCRHC, 
using the stage cost (IO), a viable proposition for some re- 
alistic problems. 

Y t T  
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Remark 1 A similar stage cost to (10) was independently 
proposed in [I21 and briejy discussed within the context of 
guaranteeing robust stability of a new type of MPC scheme. 
The stage cost proposed in [12J is L (x ,u )  := (1/2)11x - 
ProjT(x)II$ + (1/2)11u - Kxl($ where ProjT(x) denotes the 
orthogonal projection of x onto T .  The difference between 
this stage cost and (10) is minol; but the formulation in (10) 
is perhaps more natural. 

Remark 2 This paper investigates the use of (10) in solv- 
ing PN using the method proposed in [16J. Though not dis- 
cussed here, it is possible to use (10) in solving PN using the 
methods described in 13, 4, IO]. 

3 Requirements for Robust Stability 

It is well-known that, for an MPCRHC law that assumes 
a finite horizon, an arbitrary choice of terminal constraint, 
stage cost and terminal cost does not guarantee stability of 
the closed-loop system. In the absence of state disturbances, 
conventional MPCRHC schemes employ a terminal cost 
F ( x )  := IlPxll, that is a control Lyapunov function inside 
T, in order to guarantee robust stability of the origin for 
the closed-loop system [ 14, 151. However, if the interior of 
W is non-empty and the disturbance is persistent, then one 
can easily show that there does not exist a so-called robust 
control Lyapunov function in a neighbourhood of the ori- 
gin. Since it is no longer possible to drive the system to the 
origin, but only to some set containing the origin, the con- 
ventional choice of stage and terminal cost cannot guarantee 
stability or convergence [14,53.3.2] and a new type of stage 
and terminal cost is needed. 
The following definitions are taken from [ 101: The set T is 
robustly stable iff, for all E > 0, there exists a 6 > 0 such that 
d(x0,T)  5 6 implies d(xi ,T)  5 E, for all i 2 0 and all admis- 
sible disturbance sequences. The set T is robustly asymptot- 
ically (jXte-tirne) attractive with domain of attraction X iff 
for all xo E X ,  d(xi ,T)  + 0 as i -+ m (there exists a time M 
such that xi E T for all i 2 M )  for all admissible disturbance 
sequences. The set T is robustly asymptotically (finite-time) 
stable with domain of attraction X iff it is robustly stable 
and robustly asymptotically (finite-time) attractive with do- 
main of attraction X .  

Consider now the following assumptions, adapted from [ 10, 
16, 171: 

A l :  The terminal constraint set T c X contains the ori- 
gin in its interior. A linear, time-invariant control law 
K : R* -+ Rm is given such that the terminal constraint set 
T is disturbance invariant [ 111 under the control U = Kx, 
i.e. ( A + B K ) x + w E T f o r a l l x E T a n d a l l w E  W. Inad- 
dition, K x  E U for all x E T. 
A2: The terminal cost F ( x )  := 0 for all n E Rn. 
A3: The stage cost L ( x ,  U) := 0 if x E T and U = Kx. 
A4a: L ( . )  is continuous over X x U and there exists a c > 0 
such that L(x ,  U) 1 c (d  (x, T ) )  for all (x, U) E (X \ T) x U. 

A4b: L ( . )  is continuous over (X \T) x U and there exists a 
c > 0 such that L(x ,u )  2 cllxll for all ( x , u )  E (X \T)  x U. 
A l ,  A2, A3, A4a and A4b satisfy the assumptions on 
the stage cost, terminal cost and terminal constraint given 
in [14, 53.31 and [15, $4.41. Hence, one can follow a stan- 
dard procedure of using the optimal value function as a can- 
didate Lyapunov function [ 14, 151 and show that: 

Theorem 1 I f A I ,  A2, A3 and A4a (and A4b) hold, then T 
is robustly asymptotically (jinite-time) stable for  the closed- 

traction X N .  
loop System X k + l  = AXk + B K N ( X k )  + Wk with a region Of at- 

Consider also the “dual-mode’’ control law 

where KN(. )  is defined in (8). If T ,  K ,  F ( . )  and L ( . )  are cho- 
sen such that assumptions A l ,  A2, A3 and A4 are satisfied, 
then r( .) is clearly also a robustly stabilising control law, by 
Theorem 1. 

In [15, $4.6.31 and [16] it is argued that one need only con- 
sider the set of extreme disturbance realisations if the fol- 
lowing assumption holds in addition to those given above: 

A5: L ( . )  is convex over X x U. 
It is shown in [16] how, provided A l ,  A2, A3, A4a (and 
A4b) and A5 hold, one can associate a different control in- 
put sequence with each extreme disturbance realisation and, 
using a causality constraint that prevents the optimiser from 
assuming knowledge of future disturbances, one can com- 
pute a control input U E KN(X) on-line using standard finite- 
dimensional convex programming solvers. However, in [ 15, 
s4.6.31 and [16], an exact expression for the stage cost that 
allows one to implement the proposed method is not given; 
only general conditions on L ( . )  as in A3, A4a and A4b are 
given. 

Our main concern here is to point out that if Q is non- 
singular, then the stage cost (10) satisfies assumptions A3 
and A4a (but not A4b). Using this stage cost in computing 
KN(.) thus assures that T is robustly asymptotically stable 
(but not necessarily finite-time stable) for the closed-loop 
system. Additional assumptions, which guarantee that T is 
robustly finite-time stable, can be found in [9]. 

Furthermore, the stage cost (10) satisfies assumption A5 if 
T is convex (for proof, see [9]). Its use thus allows problem 
PN to be solved as a finite-dimensional problem, as will be 
shown in more detail in the next section. 

Remark 3 We once again point out that the stage cost (S), 
that was proposed in [ I O ,  141, is not continuous and hence 
not convex. As such, it does not satisfy assumption A5 
and therefore cannot be used with the approach proposed 
in [16]. 

The choice of K in (10) is problem-dependent, but typically 
it is chosen such that A + BK has all its eigenvalues strictly 
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inside the unit disk and the control U = Kx is optimal with 
respect to some performance measure. The exact choice of 
T is also problem-dependent, but a sensible choice for T is 
the minimal or maximal disturbance invariant set [l I]. For 
methods of computinga T that satisfies Al ,  see [ 11, 161, and 
for a further discussion regarding the choice of T, see [9]. 
Finally, it is worth pointing out that, provided Q is non- 
singular, A3 and A4a are satisfied even if R is singular or 
R := 0 in (10). As such, the use of the second term is not 
necessary in guaranteeing robust stability and only affects 
the performance of the closed-loop system. 

4 Solution via Linear Programming 

Following the same approach as the one taken in [16], 
let wc := {w;, . . . , w k p 1 }  denote an allowable disturbance 
sequence over the finite horizon k = 0,. . . , N - 1 and let 
l E L index these realisations (this is a slight abuse of no- 
tation, because the set of possible realisations is uncount- 
able). Also let U' := {U;, ... , u & - ~ }  denote a control se- 
quence associated with the Pth disturbance realisation and 
let xr := {xt,. . . , x i }  represent the sequence of solutions of 
the model equation 

x [ + l  = A ~ : + B ~ : + ~ : ,   EL (12) 

with x i  = x, where x denotes the current state. 

Let the finite subset ,!+ C L index those disturbance se- 
quences we that take on values at the vertices of the polytope 
W N .  Also, let the set of input sequences associated with the 
set of extreme disturbance realisations be 

U := {U' ,u2,. . . 'U"} , 

where V is the cardinality of J!,,,. 
As a first step towards, an implementable solution we fol- 
low [ 161 in replacing problem fN by the following $kite- 
dimensional problem, in which the optimisation is over con- 
trol sequences associated with extreme disturbance realisa- 
tions, but with a so-called causality constraitit: 

Problem 1 (Finite-dimensional feedback min-max) 
Given the current state x, find a solution to the problem 

u*(x):=(argmin)max I.(.&) + y L ( x i , u E ) ]  , (13a) 
k=O U ! E L V  

Note the following: (i) a different control input sequence 
is associated with each disturbance sequence, thereby over- 
coming the problem of open-loop MPC [l,  71 that asso- 
ciates a single control input sequence with all disturbance 

sequences; (ii) the causality constraint (13d) associates with 
each 4 a single control input, thereby reducing the degrees 
of freedom and making the control law independent of the 
control and disturbance sequence taken to reach that state. 

If one lets 

u*(x) =: {uI*(x),u2*(x), . . . ,u"*(x)} , 

then the question one can now ask is under what conditions 
the first component of ul*(x), denoted by U;*(.), is equal to 
KN(X) (recall that (13d) ensures that the first components of 
all the ue*(x), e E ,!+, are equal). As noted in [15, s4.6.31, if 
the system is linear, X, U, W and T are polytopes and F ( . )  
and L(.)  are convex functions, then using similar convexity 
arguments as in [16, Thm. 21, it can be shown that the first 
element of U'* (x)  is equal to K N ( X ) .  The next result follows: 

Theorem 2 (Robustly stable feedback min-max RHC) 
Suppose A I ,  A2 and A3 are satisfied. If the stage cost is 
given by (10) and Q is non-singulac then KN(X) = U;*(.) 
and T is robustly asymptotically stable for the closed- 
loop system Xkf l  = AXk + B K N ( x ~ )  + wk with a region of 
attraction X N .  

At first sight, i t  might not be clear how the the causality 
constraint (1 3d) translates into linear constraints. How- 
ever, note that for all k E (0 , .  . . , N - 2 )  and l~ ,l2 E ,!+, if 
xoi = x:, w!l = w 2 and U:' = u t  for all j E (0,. . . ,k}, 
then xi' = x: for all j E {I ,  ..., k +  1). Hence one needs 
to set u k i l  = ~ p k Z + ~  in order to satisfy the causality con- 
straint. Therefore, as discussed in [13, 161, the causality 
constraint (13d) can be replaced by associating the same 
control input with each node of the resulting extreme dis- 
turbancektate trajectory tree. This observation reduces the 
original number of control inputs that need to be computed 
from NvN to 1 + v + . . . + v'-', where v is the number of 
vertices of W. A similar observation holds for the number 
of constraints and slack variables that need to be considered. 

As a small example, consider the case when v = 2 and N = 
2. There are V = vN = 4 extreme disturbance sequences 
and if ,!+ has been defined such that wh = wi and wi  = w i ,  
then (13d) can be substituted with U; = U: = U; = U$ ut = 
U: and U: = U!. 

Clearly, the number of decision variables and constraints 
grows exponentially with the length of the control hori- 
zon. Implementing robust MPC formulated along these 
lines with large control horizons is therefore questionable. 
However, for some problems the computational complexity 
might still be acceptable. 

e e  e e 
J J c 

e 

4.1 Setting up as an LP problem 
In [I61 it was suggested that the solution to (13) should 
be computed on-line using standard convex, nonlinear pro- 
gramming solvers. We will now describe how this problem 
can be solved using linear programming if stage cost (10) is 
used. This will involve setting up a linear program that is 
equivalent to (13). 
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Recalling that F ( x )  := 0, let the total cost J(x,ue,  we) for the 
current state x and a sequence of control inputs ue associated 
with a given disturbance realisation we be defined as 

N -  I 

k=O 

As in [16], the optimisation problem in (13) can be written 
as 

min maxJ(x,ue,we), (14) 
u~c(x)  e d ,  

where C(x) is a polytope implicitly defined by the con- 
straints in (13). Clearly, the optimisation in (14) is equiv- 
alent to the convex program 

m i n { ~ l u t C ( x ) , J ( x , u e , w e ) I y ,  U,Y V~EJ!, , , } .  (15) 

Before proceeding, note that if one uses the stage cost (10) 
with p = 1 then the value of minuEU L(x,  U) can be computed 
by solving the linear program 

subject to 

-a I Q ( ~ - Y )  I a, Y E  T, 
-0 5 R ( u  - Kx) 5 0, U E U, 

where the vectors a E IR" and p E IRm. 

The above procedure is fairly standard and has been used in 
converting standard and open-loop min-max MPC problems 
with 1-norm and -norm costs to linear programs [ 1, 2, 7, 
131. We now use it to set up a linear program equivalent 
to (1  3). Let 

N- I 

e e e  and y , p , q and y, p, q be defined similarly to ue and U. It 
now follows that (13) is equivalent to 

Note that it is also possible to convert (13) to a linear pro- 
gram if p = m is chosen in the stage cost (10). This is 

achieved in a similar fashion as above by noting that if 
L(x ,u )  :=minYET I(Q(x-y)ll,+ IIR(u-Kx)ll, ,  then 

minL(x,u) = min a+ p 
U € U  u ,y ,a ,P 

subject to 

-la 5 Q(x-Y) 5 la, y E T, 
-18 5 R(" - K x )  5 1p, U E U, 

where the scalars a E IR and p E IR. 
It is interesting to observe that the use of the -norm re- 
sults in less variables and constraints than in the case of the 
1-norm. The former choice of norm is therefore probably 
preferred if computational speed is an issue. However, the 
latter norm might be preferred if a control action is sought 
that is closer to having used the quadratic norm, as in con- 
ventional MPC. 

4.2 Explicit solution of the RHC law via parametric pro- 
gramming 
The development in the previous section allows the on-line 
solution of the robust MPC problem, providing that the 
available computing resources and the required update in- 
terval are such that the LP can be solved quickly enough. 
If this is not possible, an alternative is to pre-compute the 
solution, to store this solution in a database, and to read out 
the appropriate part of the solution (which can be done rel- 
atively quickly) as required. 

By substituting (16b) into the rest of the constraints it  is 
possible to show, as in [2 ,5] ,  that (16) can be written in the 
form 

rnJn(c'0 I F 0 < g + G x } ,  (17) 

where 8 is the decision variable that consists of the non- 
redundant components of (u,y,p,q,y);  the vectors c , g  and 
matrices F, G are of appropriate dimensions and do not de- 
pend on x. The key observation here is that the constraints 
are dependent on the current state x in the affine manner 
shown above. This means that the feedback min-max prob- 
lem falls into the class of multi-parametric linear programs 
(mp-LPs) [6, 81, where each component of x represents a 
parameter that will affect the solution. This class of prob- 
lems can be solved off-line for all allowable values of x and 
results in a piecewise affine expression for the solution in 
terms of x [6, 81. 

The polyhedron XN = {x E IR" 1 30 : F0 < g + Gx} is the 
set of states for which a solution to (17) exists. Given a 
polytope of states X XN and using the algorithm described 
in [6], one can compute the explicit expression of the feed- 
back min-max RHC law for all x E E. The resulting feed- 
back min-max RHC law is then of the following piecewise 
affine form: 

KN(X) = KiX+hi, i f x  E Xi, 

where each matrix K; E RmX" and vector hi E IRm are asso- 
ciated with a polytope X;. The set of polytopes {Xi} have 
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mutually disjoint interiors and X = U i X i .  All that is re- 
quired on-line is to determine in which critical region the 
current state lies and then compute the control action using 
only matrix multiplication and addition. 

The solution to the control law presented here is of the same 
piecewise affine structure as the one given in [3, 41. How- 
ever, the derivation in [3] requires the solution of 2N multi- 
parametric mixed-integer linear programs (mp-MILPs). By 
exploiting the convex, piecewise affine nature of the optimal 
cost, this has since been improved to solving N mp-LPs [4]. 
The result presented in this paper requires the solution of a 
single mp-LP instead, though this is perhaps of more sig- 
nificance for the on-line computation than for off-line pre- 
computation of the RHC law. 

Finally, we once again mention that robust stability is not 
guaranteed for the stage cost used in [3, 41. However, ro- 
bust stability in [3,4] can be guaranteed using the new stage 
cost (10) proposed in this paper. 

5 Conclusions 

Robust MPC requires optimisation over feedback policies, 
rather than the more traditional optimisation over open-loop 
sequences, if excessive conservativeness, and hence infea- 
sibility andor  instability, is to be avoided. But this is diffi- 
cult to implement with reasonable computational effort, and 
hence its practicality has been questionable, particularly if 
on-line optimisation in real-time is envisaged. 

In this paper we have introduced a new stage cost, which al- 
lows one to compute the solution of the full robust receding 
horizon control: problem - that is, optimisation over feed- 
back policies with guaranteed robust convergence to the tar- 
get set in the face of persistent disturbances - using only 
one linear program. This is in contrast with previous pro- 
posals that have required the solution of nonlinear programs 
andor  the solution of a number of optimisation problems. 

A detailed comparison of the competing proposals is not 
straightforward, however, because the dimensions of the op- 
timisations involved vary in complicated ways. It is there- 
fore not yet possible to say conclusively which scheme will 
be more efficient for on-line implementation, or which one 
would be preferred for off-line pre-computation. The an- 
swers may well depend on problem-specific details. 
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