19 research outputs found

    Systematic review and meta-analysis of randomized clinical trials comparing efficacy and safety outcomes of insulin glargine with NPH insulin, premixed insulin preparations or with insulin detemir in type 2 diabetes mellitus

    Get PDF
    AIMS: A variety of basal insulin preparations are used to treat patients with type 2 diabetes mellitus (T2DM). We aimed to summarize scientific evidence on relative efficacy and safety of insulin glargine (IGlar) and other insulins in T2DM. METHODS: A systematic review was carried out in major medical databases up to December 2012. Relevant studies compared efficacy and safety of IGlar, added to oral drugs (OAD) or/and in combination with bolus insulin, with protamine insulin (NPH) or premixed insulin (MIX) in the same regimen, as well as with insulin detemir (IDet), in T2DM. Target HbA1c level without hypoglycemic events was considered the primary endpoint. RESULTS: Twenty eight RCTs involving 12,669 T2DM patients followed for 12–52 weeks were included in quantitative analysis. IGlar + OAD use was associated with higher probability of reaching target HbA1c level without hypoglycemia as compared to NPH + OAD (RR = 1.32 [1.09, 1.59]) or MIX without OAD (RR = 1.61 [1.22, 2.13]) and similar effect as IDet + OAD (RR = 1.07 [0.87, 1.33]) and MIX + OAD (RR = 1.09 [0.86, 1.38]). IGlar + OAD demonstrated significantly lower risk of symptomatic hypoglycemia as compared to NPH + OAD (RR = 0.89 [0.83, 0.96]), MIX + OAD (RR = 0.75 [0.68, 0.83]) and MIX without OAD(RR = 0.75 [0.68, 0.83]), but not with IDet + OAD (RR = 0.99 [0.90, 1.08]). In basal-bolus regimens, IGlar demonstrated similar proportion of T2DM patients achieving target HbA1c as compared to NPH (RR = 1.14 [0.91, 1.44]) but higher than MIX (RR = 1.26 [1.12, 1.42) or IDet (RR = 1.38 [1.11, 1.72]). The risk of severe hypoglycemia was lower in IGlar than in NPH (RR = 0.77 [0.63, 0.94]), with no differences in comparison with MIX (RR = 0.74 [0.46, 1.20]) and IDet (RR = 1.10 [0.54, 2.25]). IGlar + OAD has comparable safety profile to NPH, with less frequent adverse events leading to treatment discontinuation than MIX + OAD (RR = 0.41 [0.22, 0.76]) and IDet + OAD (RR = 0.40 [0.24, 0.69]). Also severe adverse reactions were less common for IGlar + OAD when compared to MIX + OAD (RR = 0.71 [0.52; 0.98]). CONCLUSION: For the majority of examined efficacy and safety outcomes, IGlar use in T2DM patients was superior or non-inferior to the alternative insulin treatment options. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00592-014-0698-4) contains supplementary material, which is available to authorized users

    Effectiveness and safety of ixazomib–lenalidomide–dexamethasone in high-cytogenetic-risk relapsed/refractory multiple myeloma — results of the Polish Myeloma Group observational study

    Get PDF
    The survival of patients with multiple myeloma (MM) has significantly improved in recent years due to the introduction of new drugs such as proteasome inhibitors (PI) or immunomodulatory drugs (ImiDs). However, MM is still an incurable condition, with very variable clinical course. The group of patients with especially poor prognosis are individuals with relapsed/refractory multiple myeloma (RRMM) with specific cytogenetic disorders — del(17p), t(4;14), t(14;16). Among the therapies that are currently in use the ixazomib–lenalidomid–dexamethasone (IRd) is considered as a candidate to improve outcome. In this study, we analyzed the cases of patients diagnosed with high-risk molecular RRMM, who have been treated with the IRd chemotherapy regimen. An aggressive case report with no known cytogenetic data was also added. The data was collected from four centers in Poland as part of the Polish Myeloma Group observational study. The results suggest high efficacy and good safety profile of IRd therapy in patients with RRMM and unfavorable cytogenetics

    A polygenic risk score for multiple myeloma risk prediction

    Get PDF
    This work was partially supported by intramural funds of the University of Pisa, DKFZ, and University Hospital of Southern Jutland, Denmark, and by a grant of the French National Cancer Institute (INCA). The authors wish to thank Dr. Dominic Edelmann (Division of Biostatistics, DKFZ) for helpful advice about data analysis.There is overwhelming epidemiologic evidence that the risk of multiple myeloma (MM) has a solid genetic background. Genome-wide association studies (GWAS) have identified 23 risk loci that contribute to the genetic susceptibility of MM, but have low individual penetrance. Combining the SNPs in a polygenic risk score (PRS) is a possible approach to improve their usefulness. Using 2361 MM cases and 1415 controls from the International Multiple Myeloma rESEarch (IMMEnSE) consortium, we computed a weighted and an unweighted PRS. We observed associations with MM risk with OR = 3.44, 95% CI 2.53-4.69, p = 3.55 x 10(-15) for the highest vs. lowest quintile of the weighted score, and OR = 3.18, 95% CI 2.1 = 34-4.33, p = 1.62 x 10(-13) for the highest vs. lowest quintile of the unweighted score. We found a convincing association of a PRS generated with 23 SNPs and risk of MM. Our work provides additional validation of previously discovered MM risk variants and of their combination into a PRS, which is a first step towards the use of genetics for risk stratification in the general population.University of Pisa, DKFZUniversity Hospital of Southern Jutland, DenmarkInstitut National du Cancer (INCA) Franc

    Identification of miRSNPs associated with the risk of multiple myeloma

    Get PDF
    Accepted articleMultiple myeloma (MM) is a malignancy of plasma cells usually infiltrating the bone marrow, associated with the production of a monoclonal immunoglobulin (M protein) which can be detected in the blood and/or urine. Multiple lines of evidence suggest that genetic factors are involved in MM pathogenesis, and several studies have identified single nucleotide polymorphisms (SNPs) associated with the susceptibility to the disease. SNPs within miRNA-binding sites in target genes (miRSNPs) may alter the strength of miRNA-mRNA interactions, thus deregulating protein expression. MiRSNPs are known to be associated with risk of various types of cancer, but they have never been investigated in MM. We performed an in silico genome-wide search for miRSNPs predicted to alter binding of miRNAs to their target sequences. We selected 12 miRSNPs and tested their association with MM risk. Our study population consisted of 1,832 controls and 2,894 MM cases recruited from seven European countries and Israel in the context of the IMMEnSE (International Multiple Myeloma rESEarch) consortium. In this population two SNPs showed an association with p<0.05: rs286595 (located in gene MRLP22) and rs14191881 (located in gene TCF19). Results from IMMEnSE were meta-analyzed with data from a previously published genome-wide association study (GWAS). The SNPs rs13409 (located in the 3UTR of the POU5F1 gene), rs1419881 (TCF19), rs1049633, rs1049623 (both in DDR1) showed significant associations with MM risk. In conclusion, we sought to identify genetic polymorphisms associated with MM risk starting from genome-wide prediction of miRSNPs. For some mirSNPs, we have shown promising associations with MM risk. What's new? Even though deregulation of miRNA expression has been associated with human cancers little information is available regarding their relation with MM susceptibility. We performed an in silico genome-wide search for miRSNPs and selected the most promising ones for an association study. The SNPs with the strongest associations with MM risk are localized in genes which have never been related with MM.This work was partially funded by: intramural funds of German Cancer Research Center (DKFZ), Grant ref. HUS412A1271 from the “Gerencia Regional de Salud de la Junta de Castilla y LĂ©on”. This work was supported by grants from the Instituto de Salud Carlos III (Madrid, Spain; PI12/02688). Catalan Government DURSI grant 2014SGR647 and Instituto de Salud Carlos III, co7funded by FEDER funds –a way to build Europe– grants PI11701439 and PIE13/00022info:eu-repo/semantics/publishedVersio

    Polymorphisms within autophagy-related genes as susceptibility biomarkers for multiple myeloma: a meta-analysis of three large cohorts and functional characterization

    Get PDF
    Functional data used in this project have been meticulously catalogued and archived in the BBMRI-NL data infrastructure (https://hfgp.bbmri.nl/, accessed on 12 February 2020) using the MOLGENIS open-source platform for scientific data.Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10−9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10−4−5.79 × 10−14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10−4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10−4) and circulating serum concentrations of Monocyte hemoattractant Protein (MCP)-2 (p = 3.6 × 10−4). We also found that the CD46rs1142469 SNP corre lated with numbers of CD19+ B cells, CD19+CD3− B cells, CD5+ IgD− cells, IgM− cells, IgD−IgM− cells, and CD4−CD8− PBMCs (p = 4.9 × 10−4−8.6 × 10−4 ) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27− cells (p = 9.3 × 10−4 ). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3−, MCP-2−, and IL20-dependent pathways.This work was supported by the European Union’s Horizon 2020 research and innovation program, N° 856620 and by grants from the Instituto de Salud Carlos III and FEDER (Madrid, Spain; PI17/02256 and PI20/01845), Consejería de Transformación Económica, Industria, Conocimiento y Universidades and FEDER (PY20/01282), from the CRIS foundation against cancer, from the Cancer Network of Excellence (RD12/10 Red de Cáncer), from the Dietmar Hopp Foundation and the German Ministry of Education and Science (BMBF: CLIOMMICS [01ZX1309]), and from National Cancer Institute of the National Institutes of Health under award numbers: R01CA186646, U01CA249955 (EEB).This work was also funded d by Portuguese National funds, through the Foundation for Science and Technology (FCT)—project UIDB/50026/2020 and UIDP/50026/2020 and by the project NORTE-01-0145-FEDER-000055, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF)

    Polymorphisms within Autophagy-Related Genes as Susceptibility Biomarkers for Multiple Myeloma: A Meta-Analysis of Three Large Cohorts and Functional Characterization

    Get PDF
    Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p \u3c 1 × 10−9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10−4−5.79 × 10−14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10−4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10−4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 × 10−4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3− B cells, CD5+IgD− cells, IgM− cells, IgD−IgM− cells, and CD4−CD8− PBMCs (p = 4.9 × 10−4−8.6 × 10−4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27− cells (p = 9.3 × 10−4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3−, MCP-2−, and IL20-dependent pathways

    SARS-CoV-2 infection in patients with multiple myeloma: survey in 23 centers across Europe and USA

    Get PDF
    Introduction: Despite several studies, the impact of coronavirus disease 2019 on patients with multiple myeloma remains uncertain. Material and methods: We performed a survey that covered the period of the first and second waves of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in 23 centers inseven countries. Out of 352 patients with myeloma and SARS-CoV-2, 23% died. Results/Conclusions: Logistic regression showed a lower risk of death among patients treated with proteasome inhibitor and a higher risk of death for those who had a severe or a very severe course of disease

    Polymorphisms within Autophagy-Related Genes as Susceptibility Biomarkers for Multiple Myeloma: A Meta-Analysis of Three Large Cohorts and Functional Characterization

    Get PDF
    Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10−9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10−4−5.79 × 10−14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10−4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10−4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 × 10−4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3− B cells, CD5+IgD− cells, IgM− cells, IgD−IgM− cells, and CD4−CD8− PBMCs (p = 4.9 × 10−4−8.6 × 10−4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27− cells (p = 9.3 × 10−4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3−, MCP-2−, and IL20-dependent pathways.This work was supported by the European Union’s Horizon 2020 research and innovation program, N° 856620 and by grants from the Instituto de Salud Carlos III and FEDER (Madrid, Spain; PI17/02256 and PI20/01845), Consejería de Transformación Económica, Industria, Conocimiento y Universidades and FEDER (PY20/01282), from the CRIS foundation against cancer, from the Cancer Network of Excellence (RD12/10 Red de Cáncer), from the Dietmar Hopp Foundation and the German Ministry of Education and Science (BMBF: CLIOMMICS [01ZX1309]), and from National Cancer Institute of the National Institutes of Health under award numbers: R01CA186646, U01CA249955 (EEB). This work was also funded d by Portuguese National funds, through the Foundation for Science and Technology (FCT)—project UIDB/50026/2020 and UIDP/50026/2020 and by the project NORTE-01-0145-FEDER-000055, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).Peer reviewe

    Analysis of Microstructure and Properties of a Ti–AlN Composite Produced by Selective Laser Melting

    No full text
    Selective Laser Melting (SLM) is a manufacturing technique that is currently used for the production of functional parts that are difficult to form by the traditional methods such as casting or CNC (Computer Numerical Control) cutting from a wide range of metallic materials. In our study, a mixture of commercially pure titanium (Ti) and 15% at. aluminum nitride (AlN) was Selective Laser Melted to form three-dimensional objects. The obtained 4 mm edge cubes with an energy density that varied from 70 to 140 J/mm3 were examined in terms of their microstructure, chemical and phase composition, porosity, and Vickers microhardness. Scanning Electron Microscopy (SEM) observations of the etched samples showed inhomogeneities in the form of pores and unmelted and partly melted AlN particles in the fine-grained dendritic matrix, which is typical for titanium nitrides and titanium aluminum nitrides. The AlN particles remained unmelted in samples, but no porosity was observed in the interface area between them and the dendritic matrix. Additionally, samples fabricated with the presintering step had zones with different sizes of dendrites, suggesting a differing chemical composition of the matrix and the possibility of the formation of the phases forming an Ti&ndash;Al&ndash;N ternary system. The chemical composition in the microareas of the samples was determined using Energy Dispersive X-Ray Spectroscopy (EDS) and revealed differences in the homogeneity of the samples depending on the SLM process parameters and the additional presintering step. The phase composition, examined using X-ray Diffraction analysis (XRD), showed that samples were formed from Ti, TiN, and AlN phases. Porosity tests carried out using a computer microtomography revealed porosities in a range from 7% to 17.5%. The formed material was characterized by a relatively high hardness exceeding 700 HV0.2 over the entire cross-section, which depended on the manufacturing conditions
    corecore