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Abstract 

Multiple myeloma (MM) is a malignancy of plasma cells usually infiltrating the bone marrow, 

associated with the production of a monoclonal immunoglobulin (M protein) which can be detected 

in the blood and/or urine. Multiple lines of evidence suggest that genetic factors are involved in 

MM pathogenesis, and several studies have identified single nucleotide polymorphisms (SNPs) 

associated with the susceptibility to the disease. SNPs within miRNA-binding sites in target genes 

(miRSNPs) may alter the strength of miRNA–mRNA interactions, thus deregulating protein 

expression. MiRSNPs are known to be associated with risk of various types of cancer, but they have 

never been investigated in MM. We performed an in silico genome-wide search for miRSNPs 

predicted to alter binding of miRNAs to their target sequences.  We selected 12 miRSNPs and 

tested their association with MM risk. Our study population consisted of 1,832 controls and 2,894 

MM cases recruited from 7 European countries and Israel in the context of the IMMEnSE 

(International Multiple Myeloma rESEarch) consortium. In this population two SNPs showed an 

association with p<0.05: rs286595 (located in gene MRLP22) and rs14191881 (located in gene 

TCF19). Results from IMMEnSE were meta-analyzed with data from a previously published 

genome-wide association study (GWAS). The SNPs rs13409 (located in the 3’UTR of the POU5F1 

gene), rs1419881 (TCF19), rs1049633, rs1049623 (both in DDR1) showed significant associations 

with MM risk. In conclusion, we sought to identify genetic polymorphisms associated with MM 

risk starting from genome-wide prediction of miRSNPs. For some mirSNPs we have shown 

promising associations with MM risk. 

 

What's new? Even though deregulation of miRNA expression has been associated with human 

cancers little information is available regarding their relation with MM susceptibility. We performed 

an in silico genome-wide search for miRSNPs and selected the most promising ones for an 

association study. The SNPs with the strongest associations with MM risk are localized in genes 

which have never been related with MM.  
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Introduction 

Multiple myeloma (MM) is a malignancy of plasma cells, usually infiltrating the bone marrow, 

and associated with the production of a monoclonal immunoglobulin (M protein) which can be 

detected in the blood and/or urine. MM affects the places where bone marrow is normally active in 

an adult. MM is a relatively infrequent cancer among both sexes. On a worldwide scale, it is 

estimated that about 86,000 incident cases occur annually, accounting for about 0.8% of all new 

cancer cases. About 63,000 subjects are reported to die from the disease each year, accounting for 

0.9% of all cancer deaths and nearly 10% of all haematological neoplastic diseases. 

Several factors are known or suspected to cause myeloma or trigger an already abnormal or 

damaged pre-myeloma cell population in the bone marrow. Exposure to toxic chemicals, ionizing 

radiations, immunodeficiency, or infection with cancer-causing viruses have all been implicated as 

causes or triggers of MM
1
. Converging evidence of MM in monozygotic twins and familial 

aggregation of MM strongly suggest that MM aetiology has a robust genetic component as well
2
. 

Several risk loci have been proposed and a few have been identified through candidate gene and 

genome-wide association studies (GWAS)
3–10

.  Some of these loci are involved in complex 

pathways related to cell cycle, cell proliferation and DNA repair, in which micro-RNAs (miRNAs) 

have a proven regulatory role
11

.  

MiRNAs are small non-coding RNA molecules, 20-25 nucleotides long, highly conserved 

throughout evolution. In mammals, miRNAs are predicted to control the activity of more than 60% 

of all protein-coding genes and participate in the regulation of almost every cellular process 

investigated to date
12

. They play a major role in post-transcriptional regulation processes, mainly 

silencing target mRNAs and thus decreasing their corresponding protein expression
13

.  

These small RNAs post-transcriptionally repress gene expression by recognizing 

complementary target sites most often in the 3' untranslated region (UTR) of target messenger 

RNAs (mRNAs). Several miRNAs were found to be directly involved in human cancers, including 

lung, breast, brain, liver, colon cancer and leukemia. In addition, some miRNAs may function as 
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oncogenes or tumor suppressors in tumor development. Furthermore, a widespread down-regulation 

of miRNAs is commonly observed in human cancers, which promotes cellular transformation and 

tumorigenesis
14–17

.  Recent studies have revealed a role of miRNAs in MM. Deregulated miRNA 

expression in plasma cells has been associated with tumor progression, molecular subtypes, clinical 

staging, prognosis, and drug response in MM
18

. 

Although mutation in miRNA seed sequence seems to be a rare event, sequence variation in 

miRNA target sites is relatively frequent and may play a role in cancer etiology. In silico analyses of 

expressed sequence tag SNP databases indicate different allele frequencies of miRNA-binding sites 

in tumors versus normal tissues
19

. Polymorphisms in miRNA-binding sites in target genes may alter 

the strength of miRNA–mRNA interactions, thus deregulating protein expression. SNPs belonging 

to this category are called miRSNPs
20

. MiRSNPs have been shown to be associated with the risk of 

several cancers 
21–23

  . 

We hypothesize that miRSNPs may have a role in the susceptibility of MM. To this aim, we 

performed an in silico genome-wide search of miRSNPs predicted to affect binding of micro-RNAs 

to their target genes and tested the most promising ones in a case-control association study.  
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Materials and methods 

Study population 

The study population consisted of 1,832 controls and 2,894 MM cases recruited from 7 

European countries and Israel in the context of the IMMEnSE (International Multiple Myeloma 

rESEarch) consortium (table 1)
24

 . 

Diagnosis of patients with symptomatic MM was carried out by haematologists according to 

the International Myeloma Working Group (IMWG) criteria. Demographic and clinicopathological 

characteristics including age, gender, country of origin, disease stage (Durie-Salmon and/or 

International Staging System) and serum creatinine levels were retrospectively gathered from 

medical records in each participant institution. 

Controls were selected among the general population (Italian), blood donors (Danish, Spanish, 

Polish, Portuguese and French), and hospitalized subjects with different diagnoses excluding cancer 

(Hungarian, Spanish). Gender and age at recruitment were collected for every subject enrolled. 

Cases and controls are not matched individually but age distribution and sex ratio were similar 

between cases and controls (table 1). Control samples have been collected in the same centers of the 

cases, or at least in the same geographic areas. 

In keeping with the guidelines of the Declaration of Helsinki, written informed consent was 

obtained from each participant and approval for collection and use of the samples was obtained 

from local Institutional Review Boards. 

 

SNP selection criteria  

 A search for mirSNPs was carried out on the whole genome. Polymorphisms were selected 

using bioinformatic tools and consultation of results of a previously published GWAS on MM risk. 

The selection of miRSNPs was conducted with the following criteria (Figure 1): 

• location in 3’UTR of known genes 

• high conservation score, ≥ +1 
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• MAF (minor allele frequency ) ≥ 0.05 in Caucasians 

• the strength of binding between each miRNA and its target sequence with the major and 

the minor allele (measured in silico), using mrSNP 
25

 

• location in genes that are expressed in MM cells, using Oncomine 
26

 

 

Putative miRNA-binding sites within the 3’UTR (defined as transcribed sequences from the 

stop codon to the end of the last exon of each gene) were detected by jSNPSelector version 1.0.1.7 

(http://sourceforge.net/projects/jsnpselector/), a custom-made algorithm that interrogates the 

ENSEMBL database. The conservation score is assigned to each nucleotide in a multiple species 

alignment to determine how conserved the nucleotide is. 

The strength of binding with the major and the minor allele was measured in silico using the 

publicly available mrSNP software (http://mrsnp.osu.edu). mrSNP showed a good performance to 

predict SNPs experimentally validated to affect miRNA binding, correctly identifying 69% (11/16) 

of the SNPs disrupting binding
25

.  

The selection with the mentioned workflow resulted in a list of 394 SNPs with high difference 

in Gibbs free energy between the two alleles (∆∆G) (Supplementary table 1). For mirSNPs 

predicted to bind more than one miRNA, we summed up all the ∆∆Gs for each miRNA, obtaining 

thus a total ∆∆G.  

As a final step, we verified if these miRSNPs were associated with MM risk in a previously 

published GWAS data set
4,6

.  

 Based on the process described above, we started from 2,817 SNPs, and we finally selected 12 

SNPs reported in table 2. The final list included 3 SNPs (rs1050239, rs735794 and rs1052536) with 

highest predicted difference between the two alleles in the strength of binding between miRNAs 

and their target sequence (total ∆∆G), regardless of association in the previously performed GWAS, 

with a threshold of total ∆∆G>550 (another SNP, rs13505, had ∆∆G>550 as shown in 

supplementary table 1, but it could not be designed as TaqMan assay and was therefore excluded). 
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Three more SNPs (rs1803275, rs12509103, rs3197716) had both a high total ∆∆G (∆∆G>300) and 

p<0.05 for association with MM risk in the GWAS. The other 6 SNPs were selected according to 

the GWAS p-value criterion, regardless of total ∆∆G, with an arbitrary threshold of p<0.005. 

 

SNP genotyping, quality control and data filtering 

Genomic DNA was extracted from peripheral blood or whole blood of MM cases and controls, 

using QIAampR 96 DNA QIAcubeR HT Kit. A whole genome amplification was carried out on 

samples with low levels of DNA. All the genotyping assays were carried out in 384-well format, 

with 10 ng of DNA from each subject. The order of DNAs from cases and controls was randomized 

on plates in order to ensure that an equal number of cases and controls was analyzed 

simultaneously. For quality control purpose, duplicates of 10% of the samples were interspersed 

throughout the plates. Genotyping of the 12 selected miRSNPs was carried out by using the 

TaqMan Real Time PCR method. The quality of the genotype data was assessed on the basis of 

sample call rates (we accepted samples with at least 8 out of 12 SNPs successfully genotyped), 

concordance rates between duplicate DNAs (≥99%) and test for Hardy-Weinberg Equilibrium 

(HWE) among controls in each population. We applied a Bonferroni correction for multiple testing 

to calculate the significance threshold for HWE: 0.05/(12 SNPs x 8 countries) = 5.2x10
-4

.  

 

Statistical analysis  

Analysis of association between SNPs and MM risk was performed with multivariate logistic 

regression models, adjusting for a set of covariates including age (at diagnosis for MM cases, at 

recruitment for controls), gender and country of origin. The association between miRSNPs and MM 

risk was calculated by estimating odds ratios (OR) and their 95% confidence intervals (C.I.). For all 

genotypes, we performed a statistical analysis with the allelic, dominant, codominant and recessive 

models. Since 3 of our SNPs (rs1049633, rs1049628, rs1049623) were located in the same gene 

DDR1 (r
2
 ranging from 0.377 to 0.237 in Caucasians) and two more SNPs (rs1419881 and rs13409) 
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are physically close to each other (r
2
=0.887), we calculated also MEFF correction. MEFF  is a simple 

correction for multiple testing of SNPs in linkage disequilibrium (LD) with each other, based on the 

spectral decomposition of matrices of pairwise LD between SNPs
27

. This method provides a useful 

alternative to more computationally intensive permutation tests. For performing this correction we 

used an interface available online (http://gump.qimr.edu.au/general/daleN/SNPSpD). We found a 

MEFF = 11.50. 

A P-value below 0.001, calculated with the formula 0.05/(11.5x4) was considered as threshold 

of statistical significance, considering the Bonferroni correction for MEFF and the number of 

inheritance models tested. 

Finally, we performed a meta-analysis between the data obtained in IMMEnSE and the data 

from two GWAS, respectively conducted in German and English populations
4,6

 . We considered the 

different countries participating in IMMEnSE and in the GWAS as separate groups and carried out 

meta-analyses according to the fixed effects model. 

All the statistical analyses were carried out using STATA software, version 11 for Windows.  
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Results  

IMMeNSE. As showed in table 3, we did not find strong associations between SNPs and MM 

risk. Table 3 reports the results of the analyses performed according to an allelic and codominant 

inheritance model. Two SNPs showed a p-value < 0.05: rs286595 (located in gene MRLP22) and 

rs14191881 (located in gene TCF19). Analyses of recessive and dominant models did not show any 

association at the level of 0.05 or below (data not shown). For all the analyses none of the SNPs 

passed the threshold of significance after correction for multiple testing. 

Meta-analysis. We performed a meta-analysis between the results from IMMEnSE and the 

published data of two GWASs conducted in the English and the German populations, respectively, 

for a total of 1,675 MM cases and 5,903 controls. Complete results are shown in supplementary 

table 2. We found p-values <10
-3

 for the SNPs rs13409, rs1049623, rs1049633 and rs1419881 

according to allelic or co-dominant model and no or minor heterogeneity, suggesting an association 

with a decreased risk of MM (table 4).  
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Discussion and conclusion  

The first steps of our study were the selection of the SNPs and the genotyping of cases and 

controls in the context of the IMMEnSE consortium. Although the sample size was adequate, none 

of the statistical analyses passed the significance threshold after the correction for multiple testing. 

However SNPs rs286595 (MRPL22) and rs14191881 (TCF19) showed a p-value < 0.05. The latter 

came up also in the meta-analysis, as did the SNPs rs1049633, rs1049623 (both located in the 

3’UTR of the DDR1) and rs13409 (POU1F5), which all showed an association with a decreased 

risk of MM, with no heterogeneity between IMMEnSE and the GWAS except for one case 

(rs1049633, pheterogeneity=0.038).  

The protein encoded by the gene DDR1 belongs to a subfamily of tyrosine kinase receptors that 

are activated by various types of collagen. Upregulation of DDR1 in multiple human cancers 

implies that DDR1 is involved in tumor progression 
28–30

. Four different miRNAs are predicted to 

bind DDR1 at the location of rs1049633: miR-2355-3p, miR-7, miR-3915, miR-4689. When A 

substitutes G, miR-2355-3p and miR-4689 are predicted to bind more tightly to the DDR1 3’UTR, 

instead, for miR-7 and miR-3915 the A allele is predicted to decrease its binding affinity. 

MicroRNA-7 (miR-7) acts as a potential tumor suppressor, but the opposite effect also has been 

reported
31

. MiR-7 regulates diverse fundamental biological processes of cancer cells including 

initiation, proliferation, migration, invasion, survival and death by targeting a number of oncogenic 

signaling pathways. Two miRNAs are predicted to bind the DDR1 gene where the SNP rs1049623 

is located: miR-4499 and miR-4513. We found out that carriers of C allele show a decreased risk of 

MM. The binding force of miRNAs for this SNP is predicted to be stronger when this allele is 

present, therefore it may be that when a C is present DDR1 is down-regulated, whereas usually this 

gene is up-regulated in cancer 
32

. Thus, the association we observed is consistent with the known 

biological function of DDR1. 

SNP rs1419881 is located in the gene TCF19 (transcription factor 19), which encodes a protein 

containing a PHD-type zinc finger domain and likely functions as a transcription factor. TCF19 was 
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found to be involved in cell cycle progression and proliferation in the pancreatic β-cell and it plays 

a role in the pathogenesis of diabetes
33

. Type 2 diabetes has been frequently associated with MM 

and it is thought to influence the myelomagenesis through hyperglycaemia and insulin-dependent 

and -independent mechanisms
34

. Moreover, rs1419881 is in linkage disequilibrium (r
2
=0.82) with 

the SNP rs3130453 which is located in the gene CCHCR, also known as HCR (Supplementary table 

2). The detailed function of the gene is still largely unknown. In particular, rs3130453 creates either 

a codon for tryptophan (G) or a stop codon (A). The stop codon (allele Iso3) results in the shorter 

isoform whereas the codon for tryptophan enables the usage of an earlier translation start site in 

exon 1b, thus leading to a protein with 89 additional amino acids in its N-terminal domain
35

. The 

most significant association in our analyses was found in the codominant model (p = 0.0002), 

where carriers of AA genotype have a decreased risk of MM.  

The gene POU5F1, where rs13409 is located, encodes a transcription factor containing a POU 

homeodomain that plays a key role in embryonic development and stem cell pluripotency. 

Interestingly, POU5F1 is also named as OCT-4 and it is one of the four main factors involved in the 

formation of the induced pluripotent stem cells
36

. It has a pivotal role in the maintenance of the 

differentiation status of, in practice, all types of cells and its regulation could be very important also 

for maintaining the appropriate differential state in B lymphocytes. 

This study has several strengths: large sample size and systematic, genome-wide search for 

miRSNPs. The genome-wide approach ensures that the whole set of common miRSNPs has been 

considered for this study. We cannot exclude that rarer miRSNPs have a role in MM risk, but a 

much larger sample size would be needed to address this issue. 

Predictions of miRNA-mRNA binding were carried out only with in silico tools and not 

experimentally confirmed. This could be a weakness of the study. Moreover, the vast majority of 

study subjects were Caucasians, thus it is not clear if these results can be generalized to other 

populations as well. Finally, the associations were largely driven by the German component of the 

GWAS results, and were weaker in IMMEnSE and in the English GWAS. Indeed, when the 
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German population is excluded from the meta-analysis none of the SNPs were significant 

associated with MM risk considering a Bonferroni-corrected threshold, although rs286595 was 

associated with p<0.05 (supplementary table 3). Thus, the results of the meta-analysis should be 

taken with caution. However, we did not observe statistically significant heterogeneity among the 

IMMEnSE subgroups and the GWAS populations (except for rs1049633, pheterogeneity=0.038). 

In conclusion, we found promising associations between mirSNPs in DDR1, TCF19, POU5F1 

and MM risk, which should be further replicated in independent studies. If these associations are 

confirmed, it would be interesting to test the function of the SNPs with in vitro and in vivo studies.  
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Table 1. Description of the study population. 

 

 Cases Controls Total 

Geographic origin
a
    

Denmark 299 489 788 

France 360 176 536 

Hungary 155 101 256 

Israel 93 97 190 

Italy 298 228 526 

Poland 1,254 227 1.481 

Portugal    152 195 347 

Spain 283 319 602 

Total 2,894 1,832 4,726 

Median age 

(25%-75% percentiles) 
62 (55-68) 53 (42-65)  

Gender
b
    

     Males 1,378 991 2,414 

     Females 1,302 841 2,159 

 
a Italy: Department of Oncology, Transplants and Advanced Technologies, Section of  Hematology, Pisa University Hospital, Pisa; 

Department of Biology, Division of Genetics, Pisa University, Pisa. 

Poland: Department of Hematology, Medical University of Lodz, Lodz; Department of Hematology, Cracow University Hospital, 

Cracow; Rzeszow Regional Hospital, Rzeszow; Holy Cross Cancer Center, Kielce; Hematology Clinic, Wroclaw; Department of 

Hematology, Municipal Hospital, Torun; Gdynia Oncology Center, Gdynia; Hematooncology Clinic, Lublin; Military Medical 

Institute, Warsaw; Rydygiera Hospital, Cracow; University Hospital, Bydgoszcz; Municipal Hospital, Katowice 

Spain: Hematology division, University Hospital of Salamanca, Salamanca; Hematology and Hemotherapy Department, University 

Hospital Virgen de las Nieves, Granada; Hospital Universitario Doce de Octubre, Madrid; Hospital General Universitario Morales 

Meseguer, Murcia. 

France: Hospices Civils de Lyon, International Agency for Research on cancer (IARC), Lyon. 

Portugal: Hospital de Braga, University of Minho, Braga. 

Hungary: Department of Internal Medicine, Sammelweis University, Budapest. 

Denmark: Department of Hematology, Roskilde Hospital, Copenhagen University, Roskilde;  

Israel: Hematology Division, Sheba Medical Center, Tel Hashomer.  
b The sum does not add up to the total of subjects due to missing data. 
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Table 2. List of the selected SNPs. 

 

miRSNP Gene Alleles 
Chromosome 

position 
Total ∆∆G 

P-value 

(GWAS) 
Regulome

a
 

rs735794 SH3BP2 G>C 4:2,837,711 604.1 0.61608 
2b: TF binding + any 

motif + DNase Footprint 

+ DNase peak 

rs12509103 MFAP3L A>T 4:169,986,644 315.4 0.016448 
3a: TF binding + any 

motif + DNase peak 

rs286595 MRPL22 C>T 5:154,968,992 171.3 0.0034897 
3a: TF binding + any 

motif + DNase peak 

rs1049623 DDR1 T>C 6:30,897,052 53.4 0.00014557 
5: TF binding or DNase 

peak 

rs1049633 DDR1 G>A 6:30,898,750 132.4 0.0017839 
1f: eQTL + TF binding / 

DNase peak 

rs1049628 DDR1 C>T 6:30,899,329 182.2 0.0050759 
5: TF binding or DNase 

peak 

rs1419881 TCF19 G>A 6:31,162,816 340.3 0.00094442 
1f: eQTL + TF binding / 

DNase peak 

rs13409 POU5F1 G>A 6:31,164,363 164.1 0.0009308 
4: TF binding + DNase 

peak 

rs1050239 SMPD1 G>A 11:6,394,233  638.6 0.74808 
5. TF binding or DNase 

peak 

rs11628336 DCH24 G>A 14:23,043,713 301.6 0.028482 No Data 

rs1803275 IL16 G>A 15:81,306,075 338.2 0.02965 
1f: eQTL + TF binding / 

DNase peak 

rs1052536 LIG3 C>T 17:35,004,556 550.1 0.52649 
1f: eQTL + TF binding / 

DNase peak 

 
a
 http://www.regulomedb.org/index 
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Table 3. Results of the case/control study in IMMeNSE. 

 

SNP  Gene 
Alleles Cases

b
 Controls

b
 Allelic model Codominant model 

(M/m)
a
 MM Mm mm MM Mm mm  OR

c
 95% CI

c
 p ORhet

c
 95% CI p ORhom

c
 95% CI p 

rs735794 SH3BP2 G/C 1431 1206 302 848 771 177 0.99 0.88-1.10 0.79 0.88 0.75-1.02 0.09 1.1 0.85-1.40 0.45 

rs12509103 MFAP3L A/T 2412 483 6 1484 278 1 1.04 0.86-1.27 0.64 1.04 0.85-1.27 0.69 1.72 0.15-18.8 0.66 

rs286595 MRPL22 C/T 799 1471 640 538 857 357 1.12 1.01-1.24 0.03 1.14 0.95-1.34 0.14 1.25 1.01-1.54 0.03 

rs1049623 DDR1 T/C 417 1333 1185 711 841 228 1.08 0.96-1.19 0.18 0.91 0.73-1.14 0.43 1.08 0.85-1.36 0.51 

rs1049633 DDR1 G/A 2465 409 3 1498 276 6 0.82 0.67-1.00 0.05 0.85 0.66-1.01 0.07 0.49 0.10-2.36 0.38 

rs1049628 DDR1 C/T 1781 932 139 1077 594 67 1.01 0.88-1.14 0.93 0.93 0.80-1.09 0.38 1.24 0.87-1.78 0.24 

rs1419881 TCF19 G/A 1124 1278 439 594 873 288 0.98 0.88-1.09 0.75 0.82 0.70-0.97 0.02 1.05 0.84-1.30 0.66 

rs13409 POU5F1 G/A 1194 1304 418 666 864 265 1.02 0.92-1.13 0.68 0.91 0.77-1.06 0.22 1.12 0.89-1.39 0.31 

rs1050239 SMPD1 G/A 1872 902 133 1069 593 93 0.92 0.81-1.04 0.22 0.92 0.78-1.07 0.29 0.89 0.62-1.22 0.42 

rs11628336 DCH24 G/A 1025 1375 533 646 853 293 0.99 0.89-1.10 0.91 0.96 0.82-1.24 0.63 1 0.81-1.24 0.98 

rs1803275 IL16 G/A 2567 379 21 1528 259 11 0.98 0.81-1.19 0.9 0.95 0.77-1.17 0.66 1.42 0.55-3.64 0.47 

rs1052536 LIG3 C/T 878 1402 654 590 825 365 1.01 0.90-1.11 0.89 1.05 0.89-1.24 0.57 1 0.81-1.23 0.96 

 
a
 M = major allele (i.e. more common in controls); m = minor allele (less common in controls). 
b
 Numbers may not add up to 100% due to genotyping failure, DNA depletion or covariate missing values. 
c
 OR: odds ratio; CI: confidence interval; ORhet: odds ratio obtained comparing heterozygotes with homozygotes for the major allele;  ORhom: odds 

ratio obtained comparing homozygotes for the minor allele with homozygotes for the major allele; all analyses were adjusted by age, sex and country 

of origin. 
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Table 4. Results of the meta-analysis for the allelic and codominant model. 

 

SNP Gene Model OR 95% CI p  p_heterogeneity 

rs13409 POUF51 Allelic 0.92 0.872-0.964 6.50x10
-4

 0.079 

  Codominant 0.85 0.762-0.938 2.00x10
-3

 0.068 

rs1049623 DDR1 Allelic 0.92 0.870-0.965 9.00x10
-4

 0.183 

  Codominant 0.86 0.765-0.956 6.00x10
-3

 0.504 

rs1049633 DDR1 Allelic 0.87 0.804-0.939 3.70x10
-4

 0.038 

  Codominant 0.69 0.582-0.819 2.14x10
-5

 0.599 

rs1419881 TCF19 Allelic 0.91 0.867-0.958 2.80x10
-4

 0.069 

  
Codominant 0.83 0.747-0.917 2.80x10

-4
 0.261 
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