14 research outputs found

    Leadership training to improve adenoma detection rate in screening colonoscopy: A randomised trial

    Get PDF
    Objective Suboptimal adenoma detection rate (ADR) at colonoscopy is associated with increased risk of interval colorectal cancer. It is uncertain how ADR might be improved. We compared t

    Effect of Colonoscopy Screening on Risks of Colorectal Cancer and Related Death

    Get PDF
    BACKGROUND: Although colonoscopy is widely used as a screening test to detect colorectal cancer, its effect on the risks of colorectal cancer and related death is unclear. METHODS: We performed a pragmatic, randomized trial involving presumptively healthy men and women 55 to 64 years of age drawn from population registries in Poland, Norway, Sweden, and the Netherlands between 2009 and 2014. The participants were randomly assigned in a 1:2 ratio either to receive an invitation to undergo a single screening colonoscopy (the invited group) or to receive no invitation or screening (the usual-care group). The primary end points were the risks of colorectal cancer and related death, and the secondary end point was death from any cause. RESULTS: Follow-up data were available for 84,585 participants in Poland, Norway, and Sweden - 28,220 in the invited group, 11,843 of whom (42.0%) underwent screening, and 56,365 in the usual-care group. A total of 15 participants had major bleeding after polyp removal. No perforations or screening-related deaths occurred within 30 days after colonoscopy. During a median follow-up of 10 years, 259 cases of colorectal cancer were diagnosed in the invited group as compared with 622 cases in the usual-care group. In intention-to-screen analyses, the risk of colorectal cancer at 10 years was 0.98% in the invited group and 1.20% in the usual-care group, a risk reduction of 18% (risk ratio, 0.82; 95% confidence interval [CI], 0.70 to 0.93). The risk of death from colorectal cancer was 0.28% in the invited group and 0.31% in the usual-care group (risk ratio, 0.90; 95% CI, 0.64 to 1.16). The number needed to invite to undergo screening to prevent one case of colorectal cancer was 455 (95% CI, 270 to 1429). The risk of death from any cause was 11.03% in the invited group and 11.04% in the usual-care group (risk ratio, 0.99; 95% CI, 0.96 to 1.04). CONCLUSIONS: In this randomized trial, the risk of colorectal cancer at 10 years was lower among participants who were invited to undergo screening colonoscopy than among those who were assigned to no screening. (Funded by the Research Council of Norway and others; NordICC ClinicalTrials.gov number, NCT00883792.)

    Population-Based colonoscopy screening for colorectal cancer : A randomized clinical trial

    No full text
    Importance: Although some countries have implemented widespread colonoscopy screening, most European countries have not introduced it because of uncertainty regarding participation rates, procedure-related pain and discomfort, endoscopist performance, and effectiveness. To our knowledge, no randomized trials on colonoscopy screening currently exist. Objective: To investigate participation rate, adenoma yield, performance, and adverse events of population-based colonoscopy screening in several European countries. Design, Setting, and Population: A population-based randomized clinical trialwas conducted among 94 959 men and women aged 55 to 64 years of average risk for colon cancer in Poland, Norway, the Netherlands, and Sweden from June 8, 2009, to June 23, 2014. Interventions Colonoscopy screening or no screening. Main outcomes and Measures: Participation in colonoscopy screening, cancer and adenoma yield, and participant experience. Study outcomes were compared by country and endoscopist. Results: Of 31 420 eligible participants randomized to the colonoscopy group, 12 574 (40.0%) underwent screening. Participation rates were 60.7%in Norway (5354 of 8816), 39.8%in Sweden (486 of 1222), 33.0%in Poland (6004 of 18 188), and 22.9% in the Netherlands (730 of 3194) (P <.001). The cecum intubation rate was 97.2%(12 217 of 12 574), with 9726 participants (77.4%) not receiving sedation. Of the 12 574 participants undergoing colonoscopy screening, we observed 1 perforation (0.01%), 2 postpolypectomy serosal burns (0.02%), and 18 cases of bleeding owing to polypectomy (0.14%). Sixty-two individuals (0.5%) were diagnosed with colorectal cancer and 3861 (30.7%) had adenomas, of which 1304 (10.4%) were high-risk adenomas. Detection rates were similar in the proximal and distal colon. Performance differed significantly between endoscopists; recommended benchmarks for cecal intubation (95%) and adenoma detection (25%) were not met by 6 (17.1%) and 10 of 35 endoscopists (28.6%), respectively. Moderate or severe abdominal pain after colonoscopy was reported by 601 of 3611 participants (16.7%) examined with standard air insufflation vs 214 of 5144 participants (4.2%) examined with carbon dioxide (CO2) insufflation (P <.001). Conclusions and Relevance: Colonoscopy screening entails high detection rates in the proximal and distal colon. Participation rates and endoscopist performance vary significantly. Postprocedure abdominal pain is common with standard air insufflation and can be significantly reduced by using CO2
    corecore