9 research outputs found

    Toxicokinetics of three insecticides in the female adult solitary bee Osmia bicornis

    Get PDF
    The worldwide decline of pollinators is of growing concern and has been related to the use of insecticides. Solitary bees are potentially exposed to many insecticides through contaminated pollen and/or nectar. The kinetics of these compounds in solitary bees is, however, unknown, limiting the use of these important pollinators in pesticide regulations. Here, the toxicokinetics (TK) of chlorpyrifos (as Dursban 480 EC), cypermethrin (Sherpa 100 EC), and acetamiprid (Mospilan 20 SP) was studied for the first time in Osmia bicornis females at sublethal concentrations (near LC20sLC_{20s}). The TK of the insecticides was analysed in bees continuously exposed to insecticide contaminated food in the uptake phase followed by feeding with clean food in the decontamination phase. The TK models differed substantially between the insecticides. Acetamiprid followed the classic one-compartment model with gradual accumulation during the uptake phase followed by depuration during the decontamination phase. Cypermethrin accumulated rapidly in the first two days and then its concentration decreased slowly. Chlorpyrifos accumulated similarly rapidly but no substantial depuration was found until the end of the experiment. Our study demonstrates that some insecticides can harm solitary bees when exposed continuously even at trace concentrations in food because of their constant accumulation leading to time-reinforced toxicity

    The effects of heavy metals and total petroleum hydrocarbons on soil bacterial activity and functional diversity in the upper silesia industrial region (Poland)

    Get PDF
    Various inorganic and organic pollutants in industrial soils may adversely affect soil microorganisms and terrestrial ecosystem functioning. The aim of the study was to explore the relationship between the microbial activity, microbial biomass, and functional diversity of soil bacteria and the metals and total petroleum hydrocarbons (TPHs) in the Upper Silesian Industrial Region (Poland). We collected soil samples in pine-dominated forest stands and analyzed them according to a range of soil physicochemical properties, including metal content (cadmium, lead, and zinc) and TPH content. Metal concentrations were normalized to their toxicity to soil microorganisms and integrated in a toxicity index (TI). Soil microbial activity measured as soil respiration rate, microbial biomass measured as substrate-induced respiration rate, and the bacterial catabolic activity (area under the curve, AUC) assessed using Biolog® ECO plates were negatively related to TPH pollution as shown in multiple regressions. The canonical correspondence analysis (CCA) showed that both TPH and TI affected the community-level physiological profiles (CLPPs) of soil bacteria and the pollutants’ effects were much stronger than the effects of other soil properties, including nutrient content. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11270-016-2966-0) contains supplementary material, which is available to authorized users
    corecore