24 research outputs found

    Use of natural rubber membranes as support for powder TiO2 and Ag/TiO2 photocatalysts

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)The purpose of this study was to synthesize TiO2-polymer composites able to act as photocatalyst membranes. TiO2 catalysts were prepared using the sol-gel method to contain 0.0, 0.5, 1.0, and 2.0 wt.% of embedded Ag particles, subsequently incorporated into natural rubber latex at a weight fraction of 15%. Samples of these ceramic powders were suspended in a latex emulsion (natural rubber), cast in Petri dishes and slowly dried in an oven. The resulting materials were evaluated by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray, diffuse reflectance spectroscopy, differential scanning calorimetry, thermogravimetry, and photocatalytic assaying using methylene blue as an organic pollutant reference. All composite membranes exhibited good photoactivity conferred by TiO2 powder, with 98% dye fading after 300 min of ultraviolet irradiation.The purpose of this study was to synthesize TiO2-polymer composites able to act as photocatalyst membranes. TiO2 catalysts were prepared using the sol-gel method to contain 0.0, 0.5, 1.0, and 2.0 wt.% of embedded Ag particles, subsequently incorporated in273575583CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFUNDECT - FUNDAÇÃO DE APOIO AO DESENVOLVIMENTO DO ENSINO, CIÊNCIA E TECNOLOGIA DO ESTADO DE MATO GROSSO DO SUL |Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)sem informaçãosem informaçãosem informaçãosem informaçãoThe authors wish to thank the Brazilian funding agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Apoio ao Desenvolvimento do Ensino, Ciênci

    Mechanistic implications of zinc(II) ions on the degradation of phenol by the fenton reaction

    Get PDF
    A study of the interference of Zn2+ ions on phenol degradation by Fenton reaction (Fe2+/Fe3+ + H2O2) is reported. One of the first intermediates formed in the reaction, catechol, can reduce Fe3+ to Fe2+ and, in the presence of H2O2 initiates an efficient catalytic redox cycle. In the initial stages of the reaction, this catechol-mediated cycle becomes the principal route of thermal degradation of phenol and its oxidation products. The Zn2+ ion addition enhances the persistence time of catechol, probably by stabilization of the corresponding semiquinone radical via complexation

    Interference of inorganic ions on phenol degradation by the Fenton reaction

    Get PDF
    The addition of Cu2+ ions to the classical Fenton reaction (Fe2+ plus H2O2 at pH 3) is found to accelerate the degradation of organic compounds. This synergic effect causes an approximately 15 % additional reduction of the total organic carbon (TOC), representing an overall improvement of the efficiency of the mineralization of phenol. Although Fe2+ exhibits a high initial rate of degradation, the degradation is not complete due to the formation of compounds refractory to the hydroxyl radical. The interference of copper ions on the degradation of phenol by the Fenton reaction was investigated. In the presence of Cu2+, the degradation is slower, but results in a greater reduction of TOC at the end of the reaction (t = 120 min). In the final stages of the reaction, when the Fe3+ in the solution is complexed in the form of ferrioxalate, the copper ions assume the role of the main catalyst of the degradation.Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), BrasiliaConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), BrasiliaFUNDECTFUNDECTCNPqCNPqINCT CatalysisINCT- CatalysisFAPEALFAPEA

    A mechanistic kinetic model for phenol degradation by the Fenton process

    No full text
    The objective of this paper is to develop and validate a mechanistic model for the degradation of phenol by the Fenton process. Experiments were performed in semi-batch operation, in which phenol, catechol and hydroquinone concentrations were measured. Using the methodology described in Pontes and Pinto [R.F.F. Pontes, J.M. Pinto, Analysis of integrated kinetic and flow models for anaerobic digesters, Chemical Engineering journal 122 (1-2) (2006) 65-80], a stoichiometric model was first developed, with 53 reactions and 26 compounds, followed by the corresponding kinetic model. Sensitivity analysis was performed to determine the most influential kinetic parameters of the model that were estimated with the obtained experimental results. The adjusted model was used to analyze the impact of the initial concentration and flow rate of reactants on the efficiency of the Fenton process to degrade phenol. Moreover, the model was applied to evaluate the treatment cost of wastewater contaminated with phenol in order to meet environmental standards. (C) 2009 Elsevier B.V. All rights reserved.CAPES (Brazil

    ESTUDO MECANÍSTICO DAS REAÇÕES FENTON E CUPRO-FENTON POR ANÁLISE VOLTAMÉTRICA IN SITU

    No full text
    Although the classical Fenton process exhibits a high initial rate of the organic compounds degradation, this process is not complete due to the formation of refractory compounds which resist the attack of the hydroxyl radicals. In the presence of Cu(II), the degradation is slower, but results in a greater reduction of TOC (total organic carbon) measurements of net mineralization at the end of the reaction (t=120min). The addition of Cu(II) ions to classical Fenton reaction conditions (Fe(II) plus H2O2 at pH 3) is shown to accelerate the degradation of organic compounds. This synergic effect causes an approximately 15% additional reduction of the TOC. Voltammetric studies confirm the catalytic role of catechol in the presence of Fe(III)/Fe(II) and Cu(II)/Cu(I). Addition of aliphatic acids to the reaction medium, did not interfere with the cupro-Fenton reaction, but had an inhibitory effect on the classical Fenton reaction, consistent with the following order of interaction with the ion Fe(III): Oxalic Acid (OA) >> Formic Acid (FA) ~ Acetic acid (AA)

    Surfactant degradation by a catechol-driven Fenton reaction

    No full text
    The addition of 0.5 mM catechol is shown to accelerate the degradation and mineralization of the anionic surfactant DOWFaX (TM) 2A1 (sodium dodecyldiphenyloxide disulfonate) under conventional Fenton reaction conditions (Fe(II) plus H(2)O(2) at pH 3). The catalytic effect causes a 3-fold increase in the initial rate (up to ca. 20 min) of conversion of the surfactant to oxidation products (apparent first-order rate constants of 0.021 and 0.061 min(-1) in the absence and presence of catechol, respectively). Although this catalytic rate increase persists for a certain amount of time after complete disappearance of catechol itself (ca. 8 min), the reaction rate begins to decline slowly after the initial 20 min towards that observed in the absence of added catechol. Total organic carbon (TOC) measurements of net mineralization and cyclic voltammetric and high performance liquid chromatographic (HPLC) measurements of the initial rate of reaction of catechol and the surfactant provide insight into the role of catechol in promoting the degradation of the surfactant and of degradation products as the eventual inhibitors of the Fenton reaction. (C) 2010 Elsevier B.V. All rights reserved.Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), BrasiliaConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPEALFundação de Amparo a Pesquisa do Estado de Alagoas (FAPEAL)INCTINC
    corecore