134 research outputs found
Monitoring climate change and child health: The case for putting children in all policies
Climate change is threatening the health of current and future generations of children. The most recent evidence from the Lancet Countdown: Tracking Progress on Health and Climate Change finds declining trends in yield potential of major crops, rising heatwave exposures, and increasing climate suitability for the transmission of infectious diseases, putting at risk the health and wellbeing of children around the world. However, if children are considered at the core of planning and implementation, the policy responses to climate change could yield enormous benefits for the health and wellbeing of children throughout their lives. Child health professionals have a role to play in ensuring this, with the beneficiaries of their involvement ranging from the individual child to the global community. The newly established Children in All Policies 2030 initiative will work with the Lancet Countdown to provide the evidence on the climate change responses necessary to protect and promote the health of children
Synthesis of Chiral Polyaniline Films via Chemical Vapor Phase Polymerization
Electrically and optically active polyaniline films doped with (1R)-(-)-10-camphorsulfonic acid were successfully deposited on nonconductive substrates via chemical vapor phase polymerization. The above polyaniline∕R-camphorsulfonate films were characterized by electrochemical and physical methods, such as cyclic voltammetry (CV), UV-vis spectroscopy, four-point probe conductivity measurement, Raman spectroscopy, circular dichroism spectroscopy, and scanning electron microscopy. The poly aniline films grown by this method not only showed high electrochemical activity, supported by CV and Raman spectrum, but also exhibited optical activity corresponding to the polymer chains as observed by circular dichroism spectra
The synthesis and characterisation of coordination and hydrogen-bonded networks based on 4-(3,5-dimethyl-1H-pyrazol-4-yl)benzoic acid
The synthesis, structural and thermal characterisation of a number of coordination complexes featuring the N,O-heteroditopic ligand 4-(3,5-dimethyl-1H-pyrazol-4-yl)benzoate, HL are reported. The reaction of H2L with cobalt(II) and nickel(II) nitrates at room temperature in basic DMF/H2O solution gave discrete mononuclear coordination complexes with the general formula {[M(HL)2(H2O)4]·2DMF} (M = Co (1), Ni (2)), whereas the reaction with zinc(II) nitrate gave [Zn(HL)2]∞, 3, a coordination polymer with distorted diamondoid topology and fourfold interpenetration. Coordination about the tetrahedral Zn(II) nodes in 3 are furnished by two pyrazolyl nitrogen atoms and two carboxylate oxygen atoms to give a mixed N2O2 donor set. Isotopological coordination polymers of zinc(II), {[Zn(HL)2]·2CH3OH·H2O}∞, 4, and cobalt(II), [Co(HL)2]∞, 5, are formed when the reactions are carried out under solvothermal conditions in methanol (80 °C) and water (180 °C), respectively. The reaction of H2L with cadmium(II) nitrate at room temperature in methanol gives {[Cd(HL)2(MeOH)2]·1.8MeOH}∞6, a 2-D (4,4)-connected coordination polymer, whereas with copper(II) the formation of green crystals that transform into purple crystals is observed. The metastable green phase [Cu3(HL)4(μ2-SO4)(H2O)3]∞, 7, crystallises with conserved binding domains of the heteroditopic ligand and contains two different metal nodes: a dicopper carboxylate paddle wheel motif, and, a dicopper unit bridged by sulfate ions and coordinated by ligand pyrazolyl nitrogen atoms. The resultant purple phase {[Cu(HL)2]·4CH3OH·H2O}∞, 8, however, has single copper ion nodes coordinated by mixed N2O2 donor sets with trans-square planar geometry and is threefold interpenetrated. The desolvation of 8 was followed by powder X-ray diffraction and single crystal X-ray diffraction which show desolvation induces the transition to a more closely packed structure while the coordination geometry about the copper ions and the network topology is retained. Powder X-ray diffraction and microanalysis were used to characterise the bulk purity of the coordination materials 1-6 and 8. The thermal characteristics of 1-2, 4-6 and 8 were studied by TG-DTA. This led to the curious observation of small exothermic events in networks 4, 6, and 8 that appear to be linked to their decomposition. In addition, the solid state structures of H2L and that of its protonated salt, H2L·HNO3, were also determined and revealed that H2L forms a 2-D hydrogen bonded polymer incorporating helical chains formed through N-HO and O-HN interactions, and that [H3L]NO3 forms a 1-D hydrogen-bonded polymer
Decision-support tools to build climate resilience against emerging infectious diseases in Europe and beyond
Climate change is one of several drivers of recurrent outbreaks and geographical range expansion of infectious diseases in Europe. We propose a framework for the co-production of policy-relevant indicators and decision-support tools that track past, present, and future climate-induced disease risks across hazard, exposure, and vulnerability domains at the animal, human, and environmental interface. This entails the co-development of early warning and response systems and tools to assess the costs and benefits of climate change adaptation and mitigation measures across sectors, to increase health system resilience at regional and local levels and reveal novel policy entry points and opportunities. Our approach involves multi-level engagement, innovative methodologies, and novel data streams. We take advantage of intelligence generated locally and empirically to quantify effects in areas experiencing rapid urban transformation and heterogeneous climate-induced disease threats. Our goal is to reduce the knowledge-to-action gap by developing an integrated One Health—Climate Risk framework
Explainable AI reveals changes in skin microbiome composition linked to phenotypic differences
Alterations in the human microbiome have been observed in a variety of conditions such as asthma, gingivitis, dermatitis and cancer, and much remains to be learned about the links between the microbiome and human health. The fusion of artificial intelligence with rich microbiome datasets can offer an improved understanding of the microbiome’s role in human health. To gain actionable insights it is essential to consider both the predictive power and the transparency of the models by providing explanations for the predictions. We combine the collection of leg skin microbiome samples from two healthy cohorts of women with the application of an explainable artificial intelligence (EAI) approach that provides accurate predictions of phenotypes with explanations. The explanations are expressed in terms of variations in the relative abundance of key microbes that drive the predictions. We predict skin hydration, subject's age, pre/post-menopausal status and smoking status from the leg skin microbiome. The changes in microbial composition linked to skin hydration can accelerate the development of personalized treatments for healthy skin, while those associated with age may offer insights into the skin aging process. The leg microbiome signatures associated with smoking and menopausal status are consistent with previous findings from oral/respiratory tract microbiomes and vaginal/gut microbiomes respectively. This suggests that easily accessible microbiome samples could be used to investigate health-related phenotypes, offering potential for non-invasive diagnosis and condition monitoring. Our EAI approach sets the stage for new work focused on understanding the complex relationships between microbial communities and phenotypes. Our approach can be applied to predict any condition from microbiome samples and has the potential to accelerate the development of microbiome-based personalized therapeutics and non-invasive diagnostics
Public Health Risks in Urban Slums : Findings of the Qualitative 'Healthy Kitchens Healthy Cities' Study in Kathmandu, Nepal
BACKGROUND: Communities in urban slums face multiple risks to their health. These are shaped by intermediary and structural determinants. Gaining a clear understanding of these determinants is a prerequisite for developing interventions to reduce the health consequences of urban poverty. With 828 million people living in slum conditions, the need to find ways to reduce risks to health has never been greater. In many low income settings, the kitchen is the epicentre of activities and behaviours which either undermine or enhance health. METHODS: We used qualitative methods of semi-structured interviews, observation and participatory workshops in two slum areas in Kathmandu, Nepal to gain women's perspectives on the health risks they faced in and around their kitchens. Twenty one women were interviewed and four participatory workshops with a total of 69 women were held. The women took photographs of their kitchens to trigger discussions. FINDINGS: The main health conditions identified by the women were respiratory disease, gastrointestinal disease and burn injuries. Women clearly understood intermediary (psychosocial, material and behavioural) determinants to these health conditions such as poor ventilation, cooking on open fires, over-crowding, lack of adequate child supervision. Women articulated the stress they experienced and clearly linked this to health conditions such as heart disease and uptake of smoking. They were also able to identify protective factors, particularly social capital. Subsequent analysis highlighted how female headed-households and those with disabilities had to contend with greater risks to health. CONCLUSIONS: Women living in slums are very aware of the intermediary determinants-material, behavioural and psycho-social, that increase their vulnerability to ill health. They are also able to identify protective factors, particularly social capital. It is only by understanding the determinants at all levels, not just the behavioural, that we will be able to identify appropriate interventions
Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: A multi-cohort analysis
Differences in health status by socioeconomic position (SEP) tend to be more evident at older ages, suggesting the involvement of a biological mechanism responsive to the accumulation of deleterious exposures across the lifespan. DNA methylation (DNAm) has been proposed as a biomarker of biological aging that conserves memory of endogenous and exogenous stress during life.
We examined the association of education level, as an indicator of SEP, and lifestyle-related variables with four biomarkers of age-dependent DNAm dysregulation: the total number of stochastic epigenetic mutations (SEMs) and three epigenetic clocks (Horvath, Hannum and Levine), in 18 cohorts spanning 12 countries.
The four biological aging biomarkers were associated with education and different sets of risk factors independently, and the magnitude of the effects differed depending on the biomarker and the predictor. On average, the effect of low education on epigenetic aging was comparable with those of other lifestyle-related risk factors (obesity, alcohol intake), with the exception of smoking, which had a significantly stronger effect.
Our study shows that low education is an independent predictor of accelerated biological (epigenetic) aging and that epigenetic clocks appear to be good candidates for disentangling the biological pathways underlying social inequalities in healthy aging and longevity
Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: A multi-cohort analysis
Differences in health status by socioeconomic position (SEP) tend to be more evident at older ages, suggesting the involvement of a biological mechanism responsive to the accumulation of deleterious exposures across the lifespan. DNA methylation (DNAm) has been proposed as a biomarker of biological aging that conserves memory of endogenous and exogenous stress during life.We examined the association of education level, as an indicator of SEP, and lifestyle-related variables with four biomarkers of age-dependent DNAm dysregulation: the total number of stochastic epigenetic mutations (SEMs) and three epigenetic clocks (Horvath, Hannum and Levine), in 18 cohorts spanning 12 countries.The four biological aging biomarkers were associated with education and different sets of risk factors independently, and the magnitude of the effects differed depending on the biomarker and the predictor. On average, the effect of low education on epigenetic aging was comparable with those of other lifestyle-related risk factors (obesity, alcohol intake), with the exception of smoking, which had a significantly stronger effect.Our study shows that low education is an independent predictor of accelerated biological (epigenetic) aging and that epigenetic clocks appear to be good candidates for disentangling the biological pathways underlying social inequalities in healthy aging and longevity
- …