3,864 research outputs found

    Phytoplankton production modelling in three marine ecosystems—static versus dynamic approach

    Get PDF
    Phytoplankton productivity is usually determined from water samples incubated at a number of irradiance levels during several hours. The resultant productivity-irradiance (P–E) curves are then used to estimate local and/or global phytoplankton production. However, there is growing evidence that these curves, referred as static, underestimate phytoplankton photosynthesis to a great deal, by assuming a stable response to light over the incubation period. One of the drawbacks of static P–E curves is the overestimation of photoinhibition. In this work, three one-dimensional vertically resolved models were developed as simply as possible, to investigate differences between static and dynamic phytoplankton productivity in three marine ecosystems: a turbid estuary, a coastal area and an open ocean ecosystem. The results show that, when photoinhibition development time is considered (dynamic model), the primary production estimates are always higher than when calculated with the static model. The quantitative importance of these differences varies with the type of ecosystem and it appears to be more important in coastal areas and estuaries (from 21 to 72%) than in oceanic waters (10%). Thus, these results suggest that primary production estimates, obtained under the assumption of a static behaviour response to light, may underestimate the real values of global phytoplankton primary production. Calculations suggest that the quantitative importance of this underestimation may be larger than the global missing carbon sink

    Phytoplankton production modelling in three marine ecosystems—static versus dynamic approach

    Get PDF
    Phytoplankton productivity is usually determined from water samples incubated at a number of irradiance levels during several hours. The resultant productivity-irradiance (P–E) curves are then used to estimate local and/or global phytoplankton production. However, there is growing evidence that these curves, referred as static, underestimate phytoplankton photosynthesis to a great deal, by assuming a stable response to light over the incubation period. One of the drawbacks of static P–E curves is the overestimation of photoinhibition. In this work, three one-dimensional vertically resolved models were developed as simply as possible, to investigate differences between static and dynamic phytoplankton productivity in three marine ecosystems: a turbid estuary, a coastal area and an open ocean ecosystem. The results show that, when photoinhibition development time is considered (dynamic model), the primary production estimates are always higher than when calculated with the static model. The quantitative importance of these differences varies with the type of ecosystem and it appears to be more important in coastal areas and estuaries (from 21 to 72%) than in oceanic waters (10%). Thus, these results suggest that primary production estimates, obtained under the assumption of a static behaviour response to light, may underestimate the real values of global phytoplankton primary production. Calculations suggest that the quantitative importance of this underestimation may be larger than the global missing carbon sink

    Chemical inhibition of β-glucocerebrosidase does not affect phagocytosis and early containment of Leishmania by murine macrophages

    Get PDF
    Gaucher disease is a lysosomal storage disease in which a genetic deficiency in β-glucocerebrosidase leads to the accumulation of glycosphingolipids in lysosomes. Macrophages are amongst the cells most severely affected in Gaucher disease patients. One phenotype associated with Gaucher macrophages is the impaired capacity to fight bacterial infections. Here, we investigate whether inhibition of β-glucocerebrosidase activity affects the capacity of macrophages to phagocytose and act on the early containment of human pathogens of the genus Leishmania. Towards our aim, we performed in vitro infection assays on macrophages derived from the bone marrow of C57BL/6 mice. To mimic Gaucher disease, macrophages were incubated with the β-glucocerebrosidase inhibitor, conduritol B epoxide (CBE), prior to contact with Leishmania. This treatment guaranteed that β-glucocerebrosidase was fully inhibited during the contact of macrophages with Leishmania, its enzymatic activity being progressively recovered along the 48 h that followed removal of the inhibitor. Infections were performed with L. amazonensis, L. infantum, or L. major, so as to explore potential species-specific responses in the context of β-glucocerebrosidase inactivation. Parameters of infection, recorded immediately after phagocytosis, as well as 24 and 48 h later, revealed no noticeable differences in the infection parameters of CBE-treated macrophages relative to non-treated controls. We conclude that blocking β-glucocerebrosidase activity during contact with Leishmania does not interfere with the phagocytic capacity of macrophages and the early onset of leishmanicidal responses.publishe

    Assessment of proteolysis and lipolysis in Serra cheese: effects of axial cheese location, ripening time and lactation season

    Get PDF
    The degrees of proteolysis and Iipolysis in Serra cheese were measured in cheese samples obtained from experiments laid out as a three-way facto rial design replicated twice. The independent variables studied were the location within the cheese (from the center to the surface), the position in the lactation season (from October to June) and the ripening time (from 0 to 35 days). Ali three variables had statistically significant effects on the concentration of water soluble peptides (WSP), but only the ripening time and the period within the lactation season affected the fat acidity (FA). The extents (alter the given ripening period) and the rates (averaged over the ripening period) of generation of WSP and FA were highest for spring and lowest for autumn. The lowest values for both the proteolysis extent and the proteolysis rate were obtained for the rind. The rates of proteolysis and lipolysis tended to decrease with ripening time; most of the lipolysis occurred during the first week, but proteolysis was still in progress by 35 days of ripening

    Review: Technology, Chemistry and Microbiology of Whey Cheeses

    Get PDF
    In whey cheese manufacture, whey, plain or added with milk, is heated by direct fire, bubbling steam or alternatively in jacketed vats. In some cases, salt s or organic acids are previously added. At 80-85 OC, the first particles of curd form; at 85-95 'C, the curd may be cooked for a few minutes to reduce moisture content and/or to obtain the desirable level of browning. After drainage at room temperature during molding for ca. 4 h, whey cheese is stored at ca. 4 'C. The typical mass yield is 6%, but addition of milk, calcium salts and preliminary concentration of protein (by condensation or ultrafiltration techniques) may increase yield considerably. Some types of whey cheeses are supposed to be consumed within a short time upon manufacture (e.g., Ricotta, Requeijdo and Manouri), whereas others bear a longer shelf life (e.g., Gjetost, Mysost and Myzithra). Whey cheeses are significantly different from one another in terms of chemical composition, which is mainly due to variations in the source and type of whey, as well as to the processing practices followed. Moisture content and pH of whey cheeses are usually high and favor microorganism growth (molds, yeasts, lactic acid bacteria and Enterobacteriaceae account for the dominant microflora in these cheeses). Adequate packaging of whey cheeses should be provided, and legislation should be prepared to fix standard characteristics of each type of whey cheese, and hence protect typical products from adulteration and fakes. Marketing efforts should also be aimed at increasing whey cheese consumption, either directly or incorporated in desserts, snack dips and pasta-type dishes
    corecore