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Abstract

Phytoplankton productivity is usually determined from water samples incubated at a number of irradiance levels during
several hours. The resultant productivity-irradianeK) curves are then used to estimate local and/or global phytoplankton
production. However, there is growing evidence that these curves, referred as static, underestimate phytoplankton photosynthesis
to a great deal, by assuming a stable response to light over the incubation period. One of the drawback®-ef statie@s is
the overestimation of photoinhibition.

In this work, three one-dimensional vertically resolved models were developed as simply as possible, to investigate differences
between static and dynamic phytoplankton productivity in three marine ecosystems: a turbid estuary, a coastal area and an
open ocean ecosystem. The results show that, when photoinhibition development time is considered (dynamic model), the
primary production estimates are always higher than when calculated with the static model. The quantitative importance of these
differences varies with the type of ecosystem and it appears to be more important in coastal areas and estuaries (from 21 to 72%)
than in oceanic waters (10%). Thus, these results suggest that primary production estimates, obtained under the assumption of
static behaviour response to light, may underestimate the real values of global phytoplankton primary production. Calculations
suggest that the quantitative importance of this underestimation may be larger than the global missing carbon sink.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the last decades, phytoplankton primary pro-

—_— ) duction has received considerable interest due to its
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fax: +351 22 550 82 69 relevance as the first link in trophic chains of aquatic
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pduarte@ufp.pt (P. Duarte). ical pump” for carbon dioxide uptak@&éhrenfeld and
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Falkowski, 1997. Efforts have been made to describe fixation at high irradiance) (Eq$3)—(5) and (7)—(9)
and understand the carbon fixation at a regional in Table 1. Some are static (Eq$1)—(5) and(8) in

and global scaleHRasterretxea and Astegui, 2000
Houghton et al., 1990; Longhurst et al., 1995; &ior
and Estrada, 20Q01Nevertheless, there is still a great
uncertainty about the magnitude of global primary pro-
duction. Estimates vary as much as from 2’Epgley
and Peterson, 1978 50.2 GtCy ! (Longhurst et al.,

1995. Therefore, the accurate measurement and sim-

ulation of theP—E relationship is of major importance.
Generally, theP-E relationship is determined by

Table 7 and some are dynamic, considering the effects

of time exposure to light on photosynthetic responses,
including the development of photoinhibition (e.g. Egs.
(7)and(9) in Table J.

Experimental evidence suggests that in many cases
the static description of th@—E relationship is not
appropriate Marra, 1978; Neale and Marra, 1985;
Pahl-Wostl, 1992; Macedo et al., 1998, 200
fact, the photosynthetic parameters depend on light

the incubation of water samples, at several irradiance intensities recently experienced by the organisms. The

levels, during a fixed period (2 or 4 h). The resulting
P-E curve parameters are then applied to productivity

irradiance that reaches phytoplankton varies due to
diurnal variation in light intensity and vertical mixing

models. These models are referred as static becausgrocess Denman and Gargett, 1983Experimental

it is assumed thaP-E parameters are constant over
time. The majority of the existing>—E models are
static (e.g.Steele, 1962; Vollenweider, 1965; Jassby

and Platt, 1976; Fasham and Platt, 1983; Megard et al.

1984.

evidence shows that phytoplankton cells may become
photoinhibited under high light levels. However, the
relative strength of this phenomenon depends on the

,exposure time to high irradianceddrra, 1978. There

is also some evidence that phytoplankton can maintain

There are a large number of mathematical formula- high rates of photosynthesis during the first few minutes

tions to describe the-E relationship (se&able 1for

after initial exposure to saturating or inhibiting irra-

a sample of available models and parameters). Somediance before photoinhibition takes plad¢afris and
parameters are common to almost all models or can Lott, 1973; Harris and Piccinin, 1977; Marra, 1978

be derived from the models themselves, namely initial
slope or photosynthetic efficiency); optimal light
intensity or the light level that maximizes photosyn-

When irradiance remains very high for a long period,
photoinhibition becomes more and more important
(Kok, 1956; Takahashietal., 1971; Harris and Piccinin,

thesis under given nutrient and temperature conditions 1977; Marra, 1978; Belay, 1981; Whitelam and Codd,

(Eopy), the light level at which the linear part of the
P-E curve intercepts a plateau (light saturation index -
Ex) and the maximal production rate or photosynthetic
capacity Pmay) (Table ). Parametex may be obtained
by calculating the limit of the derivative &fin relation
to E asE approaches zero. In inhibition modelpt
may be determined by calculating the light intensity
that maximizes the same derivative.

Most of the mathematical formulations describing
the P—E relationship are empirical, capable of describ-

1983; Macedo et al., 19980n the other hand, pro-
duction stops shortly after light is switched off, while
recovery from photoinhibition takes longéidk, 1956;
Belay, 198). Previous model and experimental results
suggestthat statie—E curves mightlead to a significant
underestimation of phytoplankton primary productiv-
ity (Duarte and Ferreira, 1997; Macedo et al., 2002

In spite of the above considerations, most of the
P—E formulations used within the last 5 years, in phy-
toplankton models/sub-models are sta@enlin et al.

ing geometrically the observed results, not being based (2001) described a biogeochemical model of Lake

on physiologic processes (Egd.)—(7) in Table J.
Models such as those presentedRasham and Platt
(1983) Eilers and Peeters (1988, 1998ys. (12) and
(13)inTable 7, Megard et al. (1984(similar to Eilers’
model),Han (2001a,bandRubio et al. (2003pare of

Zirich using static, saturation (Monod, cfable J
or inhibition (Steele’s equatiorSteele (1962)cf. —
Table J type of equationsdBonnet and Wessen (2001)
developed a 3D ecological model for a lacustrine
ecosystem, where light limitation is calculated by the

a mechanistic type, derived from known sequences of static Steele’s equatio@guz et al. (2001also used a
metabolic transformations. Some assume a saturationstatic formulation in a vertically resolved phytoplank-

curve (Egs(1)—(2)and(6) in Table 1), whereas oth-
ers consider photoinhibition (i.e. the decline in carbon

ton model for the Black Sea, based on a saturation
function. Chen et al. (2002coupled the Princeton
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Table 1

Some of the available formulations for tiReE relationship

Equation Category Type Source

P = Pmax [1 — exp(l — Eik)] 1) Saturation models  Empirical and static ~ Webb et al. (1974)

P= Pmaxtanh<%) , wherex : Jassby and Platt (1976)

initial slope (mg C (mg Chla)t
h~L(umolquantam?s1)™Y)  (2)

P= PmaX[ﬁpt exp (1 - %pt)} , whereEqp : Photoinhibition Steele (1962)
optimal light intensityn = 1(» empirical integer) (3) models
n#1l (4) Parker (1974)
P= Pmaxﬁ(m, different combinations of Iwakuma and Yasuno (1983)
k
u andv produce saturation or inhibition curves  (5)
P(E,t) = P(E,1) tanh( P"(‘;,)) , Wherep, (E, t) = Saturation model  Empirical and dynamic Franks and Marra (1994)
Prvax(E. r)exp(—2 [ EY*dr) andy :
timescale for photoinhibition (hy :
controls the degree of nonlinearity
of the rate response to light intensity  (6)
__(1—exp(=t/m)) tanh(E/Ey) . T - .
P(E,_t_) = 1_+(17,3Xp(7t/ti)),(ti(EfE‘tn),wher_eE_cm : Photoinhibition Empirical and dynamic Pahl-Wostl and Imboden
critical light level above which photoihnibition models (1990)

may occur (mmol quantands1), ¢ :

response time to changing light,:

photoinhibition development time (h) (7)

,seetext (8) Mechanistic and static Eilers and Peeters (1988)

£ Mechanistic and dynamicDuarte and Ferreira (1997)

derived fromEilers and
Peeters (198&nd
Pahl-Wostl and Imboden
(1990)models (see text)

_ E
aE2+bE+c

PE D = demrwmmeerrire ©)

P — photosynthetic rate (usually expressed as mg C mg¢hial); Pmax— maximum photosynthetic ratg- light intensity (usually expressed
aspmol quantam? s~1); Ey — light saturation index;— exposure time to a particular light level (h) (see text).

Ocean Model (POM) to a lower trophic level food web hydrodynamic module with a biological one, where the
model, where neither photoinhibition was considered, P-E relationship is that oPlatt et al. (1983)

nor any dynamic link between light history and pho- The works cited in the previous paragraph are a
tosynthetic parameter§hébault and Rabouille (2003)  clear demonstration of the increasing trend to couple
used two mathematical formulations of phytoplankton physical and biogeochemical models. Biogeochemical
growth rate as a function of light and temperature. In processes are computed at each grid cell, giving place
one of them (Yoyo model), temporal scales of less than to local changes in pelagic variables, such as phyto-
a day were considered, accounting for daily sun light plankton concentration, which are then transported
variability, using the stati®—E formulation ofPeeters over the model grid by the hydrodynamic model.
and Eilers (1978Robson and Hamilton (2004pplied Using P-E dynamic formulations within the scope
athree dimensional, coupled hydrodynamic-ecological of a coupled model implies the resolution of adaptive
model to simulate icrocystis bloom in an Australian equations (changing the value of parameters oPtie
river. Light limitation was based on Steele’s static for- relationship), nested within the calculation of local
mulation, in the case of freshwater diatoms, and in changes in phytoplankton biomass. As phytoplankton
the saturation type equation describedWigbb et al. biomass is transported across the model grid, so should
(1974) in the case of other algae. FinalRlipo et al. their “adaptive status” be transported and mixed with
(2004) used the ProSe model, which combines a 1D the existing phytoplankton biomass and respective
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“adaptive status”. This means that after each model
iteration, not only the resulting biomass at each model
grid cell will depend on local and transport processes,
but also the resulting “adaptive status”.

It is conceivable that in a Eulerian vertically
resolved mixed layer model, photoinhibited cells at the
surface layers may be convected downward, changing
the average phytoplankton properties of the destination
layers. In such a situation, photoinhibition may develop
further downward if the downflux speed is faster than
the recovery from photoinhibition, as suggested by the
models ofFranks and Marra (1994nd Duarte and
Ferreira (1997)An opposite situation may result from
the upwelling of non-inhibited cells, “diluting” surface
inhibited phytoplankton and increasing productivity.
Lande and Lewis (198%ompared an Eulerian model
similar to the one implemented by the previous
authors with a Lagrangian model, that simulated the
trajectories of individual cells and respective photoac-
climation, retaining information on individual cells,
and obtained very similar photosynthetic rates with
depth. The small differences observed (<1%) were

M.F. Macedo, P. Duarte / Ecological Modelling 190 (2006) 299-316

(Fig. 1). The FCA is a permanent feature throughout
the year and it forms part of the sub-tropical North
Atlantic gyre Klein and Siedler, 1989; Alves et al.,
1994. Gould (1985)found that the Front could be
identified most readily by the position of the 16
isotherm at a depth of 200m. The waters on both
sides of the FCA are oligotrophic, with the maximum
chlorophyll layer located near the nutriclinglécedo
etal., 200). The open coastal area used in this study is
the Arrabida coast (327N, 09 W) located south of
Lisbon (Portugal) Fig. 1). The sampling location has
a depth of 15m and chlorophyll concentration (Chla)
mean values are around 1 mg Chlath{Macedo et al.,
20032. Fig. 1also shows the Tagus estuary located near
Lisbon (3850N, 09°04'W). Samples were collected
in a channel of the Tagus estuary called Cala do Norte.
The water is very turbid, with annual values of sus-
pended matter ranging from 45 to 120 mgd. Salinity
ranges from 0 to 32 and is strongly influenced by the
semi-diurnal and fortnightly tidal cyclé=erreira and
Ramos, 198p

Table 2presents the main characteristics of these

due to nonlinear dependences of photosynthesis on themarine ecosystems. The mean light extinction coef-

P-E parameters, in conjunction with the variance and
covariance of these traits among cells at given depths.
The objective of this work is to evaluate the quan-
titative importance of ignoring the dynamic nature of
theP-E relationship in phytoplankton productivity and

production estimates in three marine ecosystems, and

to assess the impact that this may have on global pro-
duction estimates.

2. Materials and methods

In this work, three distinct study areas were selected

ficient (k) was calculated from Secchi disk readings.
Euphotic depth was calculated as the depth where irra-
diance is 1% of its surface valuBgrsons et al., 1984

2.2. Sampling and treatment

Water samples for chlorophyll-a (Chla) determina-
tion were collected in the above-mentioned ecosys-
tems. Inthe Arabida coast and the Tagus estuary, water
samples were sieved through a 200 mesh prior to
filtration. Filtration was done through 0.4%n mem-
brane filters. Pigments were extracted in 90% acetone
and analysed fluorometrically by the methot&ehtsch

(an oceanic area, an open coastal area and an estuarydnd Menzel (1963&s modified byHolm-Hansen et al.

to represent the main types of marine ecosystems, with
quite different depths and optical water characteristics.
The methodology applied in this work is based on ver-
tical productivity profiles calculated, using static and
dynamic P-E formulations, for each of the selected
ecosystems.

2.1. Study areas

The oceanic area studied was the Azores Front/Cur-
rent (FCA), located south of the Azores Archipelago

(1965) Calibrations were performed using Sigma Chla
standard. Temperature and salinity were determined in
situ with a CTD (Chelsea Instruments) in FCA and with
a SCT Meter (YSI model 33) at the other locations.
Primary productivity measurements were carried
out in the Arabida coast and the Tagus estuary. Sam-
ples for P-E curves determination were always col-
lected inthe morning, and keptin the dark for about four
hours before incubation. All samples were incubated
in laboratory with light provided by 1500 W tungsten
halogen lamps. Irradiance (0-9p8 m—2s~1) was
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Fig. 1. Location of the three study areas: Tagus estuary, FCA aradbifla coast
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Table 2

Main characteristics of the marine ecosystems considered in this work

Ecosystem Mean depth (m) Euphotic depth (m) Salinity range k(m™1)
Oceanic (FCA) 1000 921-46.1 351-36.3 0.05-0.1
Coastal (Arabida coast) 19 230 345-36.0 0.2
Estuarine (Tagus Estuary) 2 13 0.0-32.0 3.4

k is the mean light extinction coefficient (see text).

measured using a LICOR spherical quantum sensorforces primary productivity. Estimation of irradiance
(LI-193SA). Light attenuation was achieved with grey and radiation fluxes between the sea and the atmo-
PVC nets and preservation of the spectral characteris-sphere is based on the formulations describdfack

tics was checked as describedMiacedo et al. (1998) (1981)andPortela and Neves (1994)

All P-E experiments were performed under controlled TheEilers and Peetessequation (1988) was used
temperature, similar to that measured in the field. In to simulate primary productivity as a function of irra-
each of these experiments two incubation periods were diance (Eq(10)):
considered: a shorter and a longer one, to obtain static E

and dynamicP-E curves and parameters. Photosyn- Pignt = —
thetic and respiration rate were measured by the oxy- akE®+bE +c
gen incubation techniquevgllenweider, 197 after where Pjignt is the light limited primary productivity
the concentration procedure described and validated in (h~1), E the irradiance level(E m~2s™1) anda, b and
Macedo et al. (1998)This procedure was carried out ¢ are the adjustment parameters. By differentiating the
to guarantee phytoplankton concentrations in the incu- Eilers and Peeters (1988)odel as a function of irra-
bation vessels high enough to allow the usage of the diance, initial sloped), optimal irradiance levelHypy)
oxygen technique after short incubation periods. It con- and maximum productivityRmax) can be expressed as
sisted of using a towing net with three filtering cones a function ofa, b, andc:

with different gauze (200, 41 and 5n) nested inside

(10)

each other. Photosynthetic parameters were calculatedx = — (11)
fromtheP—E curves obtained (sééacedo et al., 2002
C
. Eopt = \/7 (12)
2.3. Model description a

. . 1
For each of the considered ecosystems a vertically Pyax =

resolved, one-dimensional, hydrodynamic-biological b+2ac
coupled model was used. This model is similar to the The model uses the depth-integrated version of Eq.
one described bfpuarte and Ferreira (1998nd was  (10), divided by the height of each vertical layer, in
implemented using an object-oriented programming order to compute average productivity (E#)). The
(OOP) approach by means of the Ecowin software analytical solutions described iBilers and Peeters

(Ferreira, 1995 The hydrodynamic sub-model used (1988)were used to solve this equation:
in this work was described biyrice et al. (1986and

(13)

applied byJanowitz and Kamykowski (1991Folar Plight = 1 /Zbonom
and long wave radiation, sensible and latent heat trans- Ztop

fers_ across j[he surface and wind speed are use(_JI as Etop €Xp(—kz)

forcing functions for the model. In the hydrodynamic X (Eton EXPk2))2 + bErop eXP_K2) 0z
sub-model, energy exchanges influence water temper- a(Etop EXPL=k2))” + DEtop EXPRZ) + ¢ (14)

ature and therefore water density, with implications on

water column stability. Wind speed exerts drag at the where Pjig: is the depth integrated, light limited pri-
surface thereby increasing mixing. In the biological mary productivity (1), z, zop and zpottom represent
sub-model, photosynthetically active radiation (PAR) the height (m) of each layer, the depth at layer top and
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the depth at layer bottom, respectively, @nslthe light
extinction coefficient within each layer (m).

In this work, some changes téilers and Peeters
(1988) model were introduced to account for the
dynamic aspects of thé¢—F curves. The photoin-
hibition parametera is recalculated as a function
of exposure time to critical irradiance (above the
optimal irradiance) according to the DYPHORA
model described iPahl-Wostl and Imboden (1990)

a(t) = (1 —exp (—f)) a

wherea(r) is the parametes expressed as a function
of time, ¢ the time exposure to a irradiance abdg:
andy; is the irradiance inhibition decay time. The value
of a in the second member of E{1L5) corresponds to
fully developed photoinhibition. It was assumed that
the recovery from photoinhibition takes the same time
as the development of inhibition. This recovery was
also calculated from E@15) except that, in this case, it

(15)

305

In all simulations, a value of 2mmolni was
assumed for the half-saturation constant for nitrogen
limitation (Caplancq, 1990; Lalli and Parsons, 1993

Finally, the nitrogen and light limited productivity
(PN) is given by
Pn = Piight(OnH, + ONOs) (18)
Respiration R) was computed as a fixed fraction of
primary productivity during the day (30%) and as a
fixed rate of phytoplankton biomass (10%) during the
night. Exudation was calculated as a constant fraction
(5%) of primary productivity. The C:Chla ratio was
considered constant and equal to 35 mg C mgChla
All these values are within the ranges referred in
the literature (e.gParsons et al., 1984; Baretta and
Ruardij, 1988; Jargensen et al., 199®hytoplankton
biomass B) changes over time were computed by the
sum of all gain and loss processes referred above, and
from vertical transport computed using the physical

depended on the time under sub-critical irradiance level SUP-model.

after the last exposure to critical irradiance. In static
simulations the parameterwas constant, whereas in
dynamic simulations it was calculated from E5)
as a function of time under photoinhibiting light.
Nitrogen was considered as the limiting nutrient
(e.g.Fasham et al., 199@ollowing studies conducted
in the Azores FrontNlacedo et al.,, 200land the
Tagus estuaryRerreira and Duarte, 1994its effect
on phytoplankton growth rate was included by means
of a Michaelis—Menten formulation. The ammonium-
limiting factor (Onh,) was calculated as follows:

NH4
= — 16
ONH, Kurs, + NHa (16)
where NH, is the ammonium concentration

(mmolni~3) measured in the water anffyy, is
the half-saturation constant for ammonium uptake.
The nitrate-limiting factor was then calculated as
follows:

NO3 e~ VNHa

- 17
KN03 + NO3 ( )

ONo; =
where NQ is the nitrate concentration (mmolT#)
measured in the wateKno, the half-saturation con-
stant for nitrate uptake angis a constant equal to 1.5
that parameterises the strength of ammonium inhibition
of nitrate uptakeFasham et al., 1990

All model simulations were performed using static
and dynami®—E formulations with and without nutri-
ent limitation, for a period of 3 days. Simulations were
also carried out without wind and with a moderate wind
velocity of 100ms!. The average gross primary pro-
ductivity (GPP) was calculated for each simulation.
The time step used in models was calculated, for each
ecosystem, as describedRowell et al. (1984)

2.3.1. Oceanic model

For the FCA model, 63 vertical layers were consid-
ered, each with 4 m depth, to simulate a 252 m water
column. Mean vertical profiles of nitrate concentration,
phytoplankton biomass and water temperature, calcu-
lated from in situ measurementdécedo et al., 2001
were used to set the initial conditions for simulations
(Fig. 2.

P-E parameters used in the FCA model were
selected within the range of those measuredatt
et al. (1983)for the Mid-Atlantic Ridge, west of the
Azores. According téahl-Wostl and Imboden (1990)
the irradiance inhibition decay timg)ranges from 0.5
to 1.5 h. For this ecosystem, a value of one hour was
assumedTable 3presents the parameters used in the
Oceanic model simulations. The model time step was
0.05h and all the simulations were performed over a
period of 3 days, between Julian day 202 and 205, in
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9 Temperature(°C) 25
T 1

0 Chlorophylla (mg m3) 0.42
T

1
Nitrate (mmolm-3)

0 05 1 15 2 25 3 35 4

—*—Chla

— Nitrate concentration

- = = = Temperature

0 156-
168-
180-
192-
204~
216~
228-
240+
252-

Fig. 2. Vertical profiles of the Oceanic model initial values: temperature (broken line), nitrate concentration (solid line with circles) and Chla
concentration (solid line).

order to reproduce the light irradiance observed during P—E experiments, hereafter referred as Coastals|, Iland

sampling. Il — made in summer, autumn and spring, respectively.
The parameters of the—E curves were determined
232 Arrdbida model experimentally using incubation periods from 30 to

h 180 min (Macedo et al., 2002 P-E equation parame-
ters are presented irable 5 The model time step used
was 0.02 h and all the simulations were performed over
a period of 3 days.

Thirty vertical layers were considered, each wit
0.5m depth, to simulate a 15m water column. The
values used to initialise the model regarding phyto-
plankton biomass, salinity, temperature and nutrient
concentrations are presentedable 4and were deter-
mined byMacedo et al. (2002) 2.3.3. Estuarine model

For this ecosystem, three sets of simulations were The estuarine model is similar to those mentioned
done. Each was based on results from three different @8bove. Twenty-three vertical layers were considered,

Table 3 Table 4
Parameters used in the FCA model simulations (see text) tSel)J(r:)wmary of the initial conditions used in the Abida model (see
Parameter name Value -

Experiments
k (light extinction coefficient) (m?) 0.1
#; (light inhibition decay time) (h%) 1 I I i
Pmax (Maximum production rate) () 0.016 Chla (mgn13) 0.98 039 133
« (initial slope) (mg C mg Chia* h~ nE~1 m?s) 010 Temperature‘C) 185 190 140
Iopt (Optimal irradiance) §E m™2s71) 87.4 Salinity 345 355 361
Latitude () 345 Nitrite + nitrate (mmol n3) 18 17 20

Simulation days 202-205 Ammonia (mmol n3) 2.0 19 05
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Table 5 Table 7
Parameters used in the Abiida coast model simulations (see text)  Parameters used in estuarine model simulations (see text)
Parameter name Value Parameter name Value
k (light extinction coefficient) (m?) 0.2 k (light extinction coefficient) (mt) 34
t; (irradiance inhibition decay time) (h) 3.45for | t; (light inhibition decay time) (h) 1
2.5forll Pmax (maximum production rate) (H) 0.351
0.55 for Il « (initial slope) (mg C mg Chlal h—1 pE~1m?s) 0114
Pmax (Maximum productivity) (i) 0.439 for | Iopt (optimal irradiance) {E m2s1) 3531
0.301 for Il Latitude () 385
0.781 for lll Simulation days 105-108
« (initial slope) (mg Cmg Chlalt h—1 0.14 for |
E-1m?s)
0.11 for Il
0.26 for 111 . . L
Iopt (Optimal irradiance) (€ m2s-1) 219 for | mixing, are presented ifig. 3a This f|gur'e shgw;
220 for I results for the top 130 m being both profiles similar
_ 425 for Il below 45 m depth. Surface temperature values are equal
;?‘““‘Ids 0 . 3255 258 for | in both simulations (22.9C) as expected, since water
imulation aays St o8m for I and air temperature are at equilibrium in this layer.
110-113 for Ill Between 5 and 45 m, the temperature profiles are very

each with 0.1 m depth, to simulate a 2.3 m water col-

different: when vertical mixing is not considered a
sub-surface temperature maximum (2422 occurs at
about 8 m whereas, when water mixing is simulated

umn. The phytoplankton biomass, salinity and temper- 5 thermostat (close to 2€) appears from the sub-

ature measured in situ were used to initialise the model

(Table §. For nitrogen concentration, two different

surface down to 20 m depth. Below this depth, between
25 and 45 m, a marked thermocline with aboG€C3of

layers were considered: one between the surface and,griation is observed. This vertical mixing water tem-

1.1 m depth and another below 1.1 m. TeE curve

perature profile is very similar to the one observed in

parameters were determined experimentally using two pe field (se€Fig. 2). When mixing is not considered, a

incubation periods: 30 and 120 miMécedo et al.,
2002. Table 7shows the parameters used in this model.
The model time step was:210~*h. All the simula-
tions were performed over a period of 3 days.

3. Results
3.1. FCA model

The average vertical profiles of water temperature
calculated using the model, with and without vertical

Table 6
Initial conditions used in the estuarine model (see text)

Variable Value
Chla concentration (mgn¥) 10.91
Temperature®C) 17.0
Salinity 25.0

Nitrate concentration (mmol 1i¥) 4.31 (surface layer)
2.90 (bottom layer)
13.45 (surface layer)

12.30 (bottom layer)

Ammonia concentration (mmol n3)

thermocline with about 4.8C of variation is observed
between 8 and 45m.

Average GPP calculated from the Oceanic model
with and without nitrogen limitation, is also presented
in Fig. 3b and c. Dynamic simulations were carried
out with and without vertical mixing. Since the GPP is
close to zero below 100 m depth, the figure only shows
the GPP vertical profile of the upper 130 m. Dynamic
simulations present higher GPP values than the static
simulations but only in the surface layers, down to
40 m depth. At greater depths, the differences between
dynamic and static simulations do not exist. The GPP
vertical profiles obtained by the static and dynamic
simulations in the surface layers (above 40 m) are very
different. The maximum productivity when using static
simulations occurs deeper (at about 20 m depth) than
in dynamic simulations (at about 5 and 10 m).

At surface layers, phytoplankton photoinhibi-
tion occurs both in static and dynamic simulations
without mixing. The absence of photoinhibition in
dynamic simulations with mixing was expected, since
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Water temperature (°C)
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Depth (m)

—— Static Dynamic without mixing = = = = Dynamic with mixing

Fig. 3. Average vertical profiles of water temperature calculated from the Oceanic model (a) and average GPP, with and without vertical mixing,
calculated with the Oceanic model; (b) without nitrogen limitation; (c) with nitrogen limitation (see text).
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Table 8
Water column GPP (mgCmnih~1) calculated from FCA model
simulations

Model Static  Dynamic Dynamic with
without mixing mixing
Without nutrient 6.83 7.59 7.58
limitation
With nutrient 4.44 4.92 4.92
limitation

obtained with the static model, these differences are
small (about 10%). The GPP reduction due to nutrient
limitation (about 35%) is greater than the differences
observed between static and dynamic simulations.

3.2. Arrdbida coast model
Vertical profiles of water temperature calculated

with the model, with and without vertical mixing,
are presented ifrig. 4. A well-mixed water column

phytoplankton cells do not stay at surface layers long is obtained when vertical mixture is imposed. The

enough for photoinhibition to develop.

temperature ranges from 186, at the surface layer,

Table 8are similar to those reported acedo et al.
(2001)for the 15 MW of the FCA. A reduction of water

area, the depth of the mixed layer is the same as
the total depth (15m). When no vertical mixing is

column GPP due to nitrogen limitation is observed Simulated, the water column becomes stratified with

both in static and dynamic simulatioritaple §. Nev-

a thin and cold water mass at the surface due to the

ertheless, the vertical profiles of static and dynamic cooling effect of air temperature. The layer below is

simulations are similar with and without nitrogen lim-
itation (Fig. 4b and c). Although water column GPP

the warmer one. These temperature profiles are similar
to the ones obtained for the FCA model in the upper

obtained using the dynamic model was higher than that '2yers, down to 20 m deptlfr(g. 3a).

Water temperature (°C)
015.-:) 15.516.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0

0.5 o—_

Depth (m)
~l
w

——— With mixing —o6— Without mixing

Fig. 4. Average vertical profiles of water temperature, with and with-

out vertical mixing, calculated from the Aabida coast model.

Fig. 5 shows average GPP as a function of depth
obtained from the three simulation sets of thedhida
model. GPP is greater than zero throughout the whole
water column. These results are in accordance with the
fact that all the water columns is euphotic (3abéle 2.

All dynamic simulations showed higher GPP values
than the static ones. Furthermore, the vertical GPP
profiles from static and dynamic simulations are com-
pletely different. The maximum GPP layer observed
using the static simulations occurs at around a 7m
depth in Coastal I, 6m in Il and 3.5m in Ill; whereas
the dynamic simulations presented maximum GPP
near surfaceKig. 5. All static simulations exhibited
photoinhibition at surface layers but this is not appar-
ent in the dynamic simulations. Dynamic simulations
with and without mixing were very similar. However,
vertical mixing induced a small increase in GPP at the
surface layers of the water column (until 1.5 m).

Water column GPP values, with and without nitro-
gen limitation, are presented fables 9 and 10The
reduction in GPP from the dynamic to the static sim-
ulation is quite large and it ranges from 21 to 71%,
depending on the experiment (Coastal I, Il or IIl). The
smaller difference is found in Coastal lll and itis due to
the smalk; value (0.55 h). The GPP reduction of water
column primary production due to nitrogen limitation
ranged from 45 to 55%.
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Fig.5. Average GPP given by the Airida coast model, with and without vertical mixing, ustirg parameters from three different experiments:
(@) I; (b) II; (c) . These simulations were performed without nitrogen limitation (see text).

3.3. Estuarine model

Average vertical profiles of water temperature, with
and without vertical mixing, are presentedhiy. 6a.
These water temperature profiles are very similar to

Table 9
Water column GPP (mg Cn¢ h—1) calculated from Arabida coast
model simulations without nitrogen limitation

Static Dynamic Dynamic with
without mixing mixing
Coastal | 7514 27090 27105
Coastal Il 1852 4189 4191
Coastal Il 20410 25967 25966

the ones obtained with the Axbida coast model simu-
lations. A well-mixed water column is obtained when
vertical mixture is simulated. Temperature ranged from
19.0°C, at the surface layer, to 18.76, at the bot-
tom layer. This is a shallow ecosystem (2.3 m) and the

Table 10
Water column GPP (mg Cni h—1) calculated from the A&bida
coast model simulations with nitrogen limitation

Model Static Dynamic Dynamic with
without mixing mixing
Coastal | 390 1420 1421
Coastal Il 952 215 215
Coastal Il 8907 1133 1133
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Fig. 6. Average vertical profiles of water temperatut€)( obtained from the estuarine model simulations (a) and average gross primary
productivity (GPP), with and without vertical mixing, calculated from the estuarine model: (a) without nitrogen limitation; (b) with nitrogen
limitation (see text).
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Table 11
Water column GPP (mgCnth~1) calculated from the estuarine
model simulations with and without nitrogen limitation

Model Static  Dynamic Dynamic with
without mixing mixing
Without nutrient  50.95  70.39 70.42
limitation
With nutrient 44.3 61.25 61.26
limitation

depth of the mixed layer is the same as the total depth.
When no vertical mixing is simulated, the water col-
umn becomes stratified.

M.F. Macedo, P. Duarte / Ecological Modelling 190 (2006) 299-316

a high water transparency and a low light extinction
coefficient (0.1 m1).

Photoinhibition observed in the static simulation
was larger than in the dynamic simulation. This was
expected, since photoinhibition is calculated as a func-
tion of the exposure time spent abo¥gy: in the
dynamic simulation (see E@15)), whereas in static
simulation photoinhibition develops instantaneously.
Vertical mixing in the dynamic simulation reduces pho-
toinhibition near the surface by reducing the time expo-
sure of phytoplankton to high irradiance levdlsiarte
and Ferreira, 1997 At the same time, vertical mixing
also transports photoinhibited cells to deeper layers,

GPP results obtained using the estuarine model arechanging population parameters and therefore reducing

presented irFig. b and c. The dynamic simulation

presented higher GPP values than the static simulation.

The vertical GPP profiles from static and dynamic sim-

productivity in those layers. Moreove?ay increases
with a decrease in (photoinhibition parameter) as can
be seen from Eq13), therefore, when phytoplankton

ulations are completely different above 0.8 m depth. In is exposed to a critical irradiance for a short period of
static simulations, a surface photoinhibition is observed time, GPP may be higher than expected when measured
and a maximum GPP layer is found at 0.3 m, whereas for the same irradiance after a long incubation period.
in the dynamic simulations a maximum GPP occurs  The small differences in the water column predicted
near the surface~{g. @ and c). Below 0.8 m the dif- GPP, between static and dynamic simulations in the
ferences between static and dynamic simulations dis- FCA model (about 10%), are explained by the fact that
appear since the initial slope of tle-E curves is the primary production occurs until around 100 m depth
same. In this estuarine area, the water column is very but the differences between the vertical GPP profiles
turbid and the photic depth reaches only 1.35 m depth. are only observed in the first 40 m. At greater depths,
Bellow 1.70 m GPP is close to zero. there is no distinction in GPP between dynamic and
Table 11 presents water column GPP. Dynamic static simulations since the initial slope of tifeE
simulation with vertical mixing resulted in slightly  curves is independent of the photoinhibition parameter
higher GPP values than without vertical mixing. This (see Eq(11)).
small increase is due to the higher GPP at the surface Inthe Arrabida and estuarine modelsds. 4 and b
layers of the water column. The static simulation surface photoinhibition was only observed in static
GPP values are 27% lower. Nitrogen limitation simulations. This static GPP profile is in accordance
reduced GPP both in the dynamic and in the static with the results observed experimentally by several
simulations Table 1). However, the difference in  authors (e.g.Harris and Lott, 1973; Marra, 1978;
GPP observed between static and dynamic simulationsGoldman and Dennett, 1984vhen water samples are
is greater than the difference due to nitrogen limitation held in bottles at or near surface (under high light
(about 13%). conditions) for a period of hours. However, when phy-
toplanktonic cells are exposed to a critical irradiance
for a short period, primary productivity is higher than
when measured for the same light intensity after the
incubation of the phytoplankton for a period of a few
In the FCA model, vertical mixing did not induce hours Marra, 1978; Macedo et al., 1998The GPP
significant changes in water column GPP. The reduc- vertical profiles obtained by the static simulation may
tion in near surface GPP observed in the simulations overestimate photoinhibition, since in natural popula-

4. Discussion

without vertical mixing is due to photoinhibition
(Neale, 1987; Long et al., 1994This resulted from
the combination of a lowEqp: (87.4pE m~2s71) with

tions, phytoplankton cells do not stay at the same depth
for longer periods. The results obtained in this work
are in accordance to those reported by several authors
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(Harris and Piccinin, 1977; Marra, 1978; Neale, 1987, There is an emergent modelling approach using
Long et al., 1994; Duarte and Ferreira, 1997; Macedo dynamic formulations for model parameters -
etal., 1998. Structurally Dynamic Modelling Jgrgensen and
Nitrogen limitation influenced both static and Bendoriccchio, 2001 According to these authors, in
dynamic simulations in the same way by reducing GPP these models, parameters are changed according to
without changingits vertical pattern. Itis alsoimportant some goal function, such as the maximum power prin-
to notice that there were three cases (estuarine modelciple, ascendancy or exergy. Therefore, the uge-@f
and Coastals | and Il of Aabida model) in which the  dynamic formulations is well within the spirit of recent
differences in phytoplankton production between static developments in ecological modelling, with the dif-
and dynamic simulations were larger than the differ- ference that parameters are calculated in a determinist
ences imposed by nutrient limitation. way, whereas in models using goal seeking functions,
For all three ecosystems considered, GPP resultstypically (e.gZhang etal., 2003, 200dew parameter
from static simulations were always lower than those combinations are chosen by trial and error, to maximize
obtained using dynamic simulations. The magnitude of the goal seeking function. The two approaches are not
this difference ranges from 10 to 72% and it appears to incompatible and may be used in the same model for
be dependent not only on the ecosystem characteristicsdifferent parameters, according to available knowledge
(e.g. depth, light extinction coefficient, etc.) but also on on their mutual covariance and/or quantitative relation-
the P-E curve parameters, especially theparameter. ships and between them and environmental conditions.
The importance of this parameter can be clearly seenin
the Arrabida coast model resultBi¢. 5andTable 9.
In this model, a lower; value (Coastal Ill), leadsto a 5. Conclusions
smaller difference between static and dynamic simula-
tions. When the exposure time to an irradiance above  In this work, three one-dimensional vertical models
Eqpt is larger than the photoinhibition development were elaborated as simply as possible, to investigate
time (), the a(r) parameter converges i@ which the differences between predicted GPP using a static
corresponds to full development of photoinhibition. and a dynami®—E formulation. Dynamic simulations
Nevertheless, it is important to note that in natural showed GPP values higher than those predicted using
conditions, there are many other mechanisms that may static models.
influence vertical GPP. For instance, the C:Chlarateis  The overall results presented here suggest that
assumed constant in this work, but it may change with primary production estimates, obtained through the
temperature, light intensity and nutrient concentration assumption of a static behaviour of the photosynthetic
(Cloern et al., 199p In the estuarine model, vertical parameters in response to light, may underestimate
mixing is simulated as being only dependent on the real values, with potential implications in global
wind, but in natural conditions it is mostly influenced production estimates. The quantitative importance of
by tidal currents and river flows. These will probably this underestimation appears to be more important
have a much stronger effect in reducing the exposure in coastal areas and in estuaries (21-72%) than in
time of phytoplankton cells to inhibiting light intensity.  oceanic waters (10%). Considering only the coastal
These aspects were not considered in this paper sinceecosystems global phytoplankton primary production
the aim of the present work was to keep the models as estimates (between 8.9 and 14.4 GtC yLonghurst
simple as possible in order to highlight the differences et al., 1993 and assuming that these values are
between static and dynamic simulations. underestimated by only 30%, phytoplankton carbon
The results presented in this work suggest the impor- fixation in coastal areas may lie between 12.7 and
tance of considering the variability #E parameters ~ 20.6 GtCy 1. These values correspond to an increase
in photosynthesis modelling. This implies increasing in global primary production, of 3.8-6.2GtCY¥.
he physiological detail of models. Some authors argue Ignoring this increase would be the same as, for
that more physiological detail does not necessarily instance, ignoring the overall Indic Ocean phytoplank-
improve the performance of ecosystem models (e.g. ton primary production, estimated between 4.7 and
Fulton et al., 2004 in clear opposition to our results. 6.5 GtCy ! by Berger et al. (1987andLonghurst et
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al. (1995) Moreover, this range of values is higherthan cChen, C., Ji, R., Schwab, D.J., Beletsky, D., Fahnenstiel, G.L., Jiang,

the missing carbon sink of 1.6 Gt C¥ (Sundquist,
1993; Mann and Lazier, 1996Although these calcu-

lations are merely speculative, they help us understand

the potential importance of considering the dynamic
behaviour of the photoinhibition parameters in GPP
estimates, when thB-FE relationship is used in math-

ematical models. The drawbacks of using dynamic
P—E models are their larger number of parameters,

M., Johengen, T.H., Vanderploeg, H., Eadie, B., Budd, J.W.,
Bundy, M.H., Gardner, W., Cotner, J., Lavrentyev, P.J., 2002.
A model study of the coupled biological and physical dynamics
in Lake Michigan. Ecol. Model. 151, 154-168.

Denman, K.L., Gargett, A.E., 1983. Time and space scales of vertical
mixing and advection of phytoplankton in upper ocean. Limnol.
Oceanogr. 28, 801-815.

Duarte, P., Ferreira, J.G., 1997. Dynamic modelling of photosynthe-
sis in marine and estuarine ecosystems. Environ. Model. Assess.
2,83-93.

requiring more detailed photosynthetic studies, and the gjers, P.H.C., Peeters, J.C.H., 1988. A model for the relationship

larger computation time, that should be considerable
smaller than the time scales of dynamic processes.
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