3,028 research outputs found

    A search for solar neutrons on a long duration balloon flight

    Get PDF
    The EOSCOR 3 detector, designed to measure the flux of solar neutrons, was flown on a long duration RACOON balloon flight from Australia during Jan. through Feb, 1983. The Circum-global flight lasted 22 days. No major solar activity occurred during the flight and thus only an upper limit to the solar flare neutrons flux is given. The atmospheric neutron response is compared with that obtained on earlier flights from Palestine, Texas

    Dynamics of Learning with Restricted Training Sets I: General Theory

    Get PDF
    We study the dynamics of supervised learning in layered neural networks, in the regime where the size pp of the training set is proportional to the number NN of inputs. Here the local fields are no longer described by Gaussian probability distributions and the learning dynamics is of a spin-glass nature, with the composition of the training set playing the role of quenched disorder. We show how dynamical replica theory can be used to predict the evolution of macroscopic observables, including the two relevant performance measures (training error and generalization error), incorporating the old formalism developed for complete training sets in the limit α=p/N→∞\alpha=p/N\to\infty as a special case. For simplicity we restrict ourselves in this paper to single-layer networks and realizable tasks.Comment: 39 pages, LaTe

    Heavy rain effects on airplane performance

    Get PDF
    The objective is to determine if the aerodynamic characteristics of an airplane are altered while flying in the rain. Wind-tunnel tests conducted at the NASA Langley Research Center (LaRC) have shown losses in maximum lift, reduction in stall angle, and increases in drag when a wing is placed in a simulated rain spray. For these tests the water spray concentration used represented a very heavy rainfall. A lack of definition of the scaling laws for aerodynamic testing in a two-phase, two-component flow makes interpolation of the wind-tunnel test uncertain. Tests of a large-scale wing are to be conducted at the LaRC. The large-scale wing is mounted on top of the Aircraft Landing Dynamics Facility (ALDF) carriage. This carriage (which is 70-foot long, 30-foot wide, and 30-foot high) is propelled with the wing model attached down a 3000-foot long test track by a water jet at speeds of up to 170 knots. A simulated rain spray system has been installed along 500 feet of the test track and can simulate rain falls from 2 to 40 inches/hour. Operational checks are underway and the initial tests should be completed by the Fall of 1989

    Detection of Coulomb Charging around an Antidot in the Quantum Hall Regime

    Full text link
    We have detected oscillations of the charge around a potential hill (antidot) in a two-dimensional electron gas as a function of a large magnetic field B. The field confines electrons around the antidot in closed orbits, the areas of which are quantised through the Aharonov-Bohm effect. Increasing B reduces each state's area, pushing electrons closer to the centre, until enough charge builds up for an electron to tunnel out. This is a new form of the Coulomb blockade seen in electrostatically confined dots. Addition and excitation spectra in DC bias confirm the Coulomb blockade of tunnelling.Comment: 4 pages, 4 Postscript figure

    Chemical Abundances Of Open Clusters From High-Resolution Infrared Spectra. I. NGC 6940

    Full text link
    We present near-infrared spectroscopic analysis of 12 red giant members of the Galactic open cluster NGC 6940. High-resolution (R≃\simeq45000) and high signal-to-noise ratio (S/N > 100) near-infrared H and K band spectra were gathered with the Immersion Grating Infrared Spectrograph (IGRINS) on the 2.7m Smith Telescope at McDonald Observatory. We obtained abundances of H-burning (C, N, O), α{\alpha} (Mg, Si, S, Ca), light odd-Z (Na, Al, P, K), Fe-group (Sc, Ti, Cr, Fe, Co, Ni) and neutron-capture (Ce, Nd, Yb) elements. We report the abundances of S, P, K, Ce, and Yb in NGC 6940 for the first time. Many OH and CN features in the H band were used to obtain O and N abundances. C abundances were measured from four different features: CO molecular lines in the K band, high excitation C I lines present in both near-infrared and optical, CH and C2C_2 bands in the optical region. We have also determined 12C/13C^{12}C/^{13}C ratios from the R-branch band heads of first overtone (2-0) and (3-1) 12CO^{12}CO (2-0) 13CO^{13}CO lines near 23440 \overset{\lower.5em\circ}{\mathrm{A}} and (3-1) 13CO^{13}CO lines at about 23730 \overset{\lower.5em\circ}{\mathrm{A}}. We have also investigated the HF feature at 23358.3 \overset{\lower.5em\circ}{\mathrm{A}}, finding solar fluorine abundances without ruling out a slight enhancement. For some elements (such as the α{\alpha} group), IGRINS data yield more internally self-consistent abundances. We also revisited the CMD of NGC 6940 by determining the most probable cluster members using Gaia DR2. Finally, we applied Victoria isochrones and MESA models in order to refine our estimates of the evolutionary stages of our targets.Comment: 16 pages, 10 figure

    Strong Nebular Line Ratios in the Spectra of z~2-3 Star-forming Galaxies: First Results from KBSS-MOSFIRE

    Get PDF
    We present initial results of a deep near-IR spectroscopic survey covering the 15 fields of the Keck Baryonic Structure Survey (KBSS) using MOSFIRE on the Keck 1 telescope, focusing on a sample of 251 galaxies with redshifts 2.0< z < 2.6, star-formation rates 2 < SFR < 200 M_sun/yr, and stellar masses 8.6 < log(M*/M_sun) < 11.4, with high-quality spectra in both H- and K-band atmospheric windows. We show unambiguously that the locus of z~2.3 galaxies in the "BPT" nebular diagnostic diagram exhibits a disjoint, yet similarly tight, relationship between the ratios [NII]6585/Halpha and [OIII]/Hbeta as compared to local galaxies. Using photoionization models, we argue that the offset of the z~2.3 locus relative to z~ 0 is explained by a combination of harder ionizing radiation field, higher ionization parameter, and higher N/O at a given O/H than applies to most local galaxies, and that the position of a galaxy along the z~2.3 star-forming BPT locus is surprisingly insensitive to gas-phase oxygen abundance. The observed nebular emission line ratios are most easily reproduced by models in which the net ionizing radiation field resembles a blackbody with effective temperature T_eff = 50000-60000 K and N/O close to the solar value at all O/H. We critically assess the applicability of commonly-used strong line indices for estimating gas-phase metallicities, and consider the implications of the small intrinsic scatter in the empirical relationship between excitation-sensitive line indices and stellar mass (i.e., the "mass-metallicity" relation), at z~2.3.Comment: 41 pages, 25 figures, accepted for publication in the Astrophysical Journal. Version with full-resolution figures available at http://www.astro.caltech.edu/~ccs/mos_bpt_submit.pd

    A Candidate Young Massive Planet in Orbit around the Classical T Tauri Star CI Tau

    Get PDF
    The ~2 Myr old classical T Tauri star CI Tau shows periodic variability in its radial velocity (RV) variations measured at infrared (IR) and optical wavelengths. We find that these observations are consistent with a massive planet in a ~9-day period orbit. These results are based on 71 IR RV measurements of this system obtained over 5 years, and on 26 optical RV measurements obtained over 9 years. CI Tau was also observed photometrically in the optical on 34 nights over ~one month in 2012. The optical RV data alone are inadequate to identify an orbital period, likely the result of star spot and activity induced noise for this relatively small dataset. The infrared RV measurements reveal significant periodicity at ~9 days. In addition, the full set of optical and IR RV measurements taken together phase coherently and with equal amplitudes to the ~9 day period. Periodic radial velocity signals can in principle be produced by cool spots, hot spots, and reflection of the stellar spectrum off the inner disk, in addition to resulting from a planetary companion. We have considered each of these and find the planet hypothesis most consistent with the data. The radial velocity amplitude yields an Msin(i) of ~8.1 M_Jup; in conjunction with a 1.3 mm continuum emission measurement of the circumstellar disk inclination from the literature, we find a planet mass of ~11.3 M_Jup, assuming alignment of the planetary orbit with the disk.Comment: 61 pages, 13 figures, accepted for publication in The Astrophysical Journa
    • …
    corecore