255 research outputs found

    Glutamate transporter dysfunction associated with nerve injury-induced pain in mice

    Get PDF
    Dysfunction at glutamatergic synapses has been proposed as a mechanism in the development of neuropathic pain. Here we sought to determine whether peripheral nerve injury-induced neuropathic pain results in functional changes to primary afferent synapses. Signs of neuropathic pain as well as an induction of glial fibrillary acidic protein in immunostained spinal cord sections 4 days after partial ligation of the sciatic nerve indicated the induction of neuropathic pain. We found that following nerve injury, no discernable change to kinetics of dl-α-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA) or N-methyl-d-aspartate receptor (NMDAR)-mediated evoked excitatory postsynaptic currents (eEPSCs) could be observed in dorsal horn (lamina I/II) neurons compared with those of naïve mice. However, we did find that nerve injury was accompanied by slowed decay of the early phase of eEPSCs in the presence of glutamate transporter inhibition by the competitive nontransportable inhibitor dl-threo-β-benzyloxyaspartic acid (TBOA). Concomitantly, expression patterns for the two major glutamate transporters in the spinal cord, excitatory amino acid transporters (EAAT) 1 and EAAT2, were found to be reduced at this time (4 days postinjury). We then sought to directly determine whether nerve injury results in glutamate spillover to NMDARs at dorsal horn synapses. By employing the use-dependent NMDAR blocker (±)MK-801 to block subsynaptic receptors, we found that although TBOA-induced spillover to extrasynaptic receptors trended to increased activation of these receptors after nerve injury, this was not significant compared with naïve mice. Together, these results suggest the development of neuropathic pain involves subtle changes to glutamate transporter expression and function that could contribute to neuropathic pain during excessive synaptic activity.NHMRC grant: 0569927 & 35144

    Opioid-related (ORL1) receptors are enriched in a subpopulation of sensory neurons and prolonged activation produces no functional loss of surface N-type calcium channels.

    Get PDF
    The opioid-related receptor, ORL1, is activated by the neuropeptide nociceptin/orphanin FQ (N/OFQ) and inhibits high-voltage-activated (HVA) calcium channel currents (I(Ca)) via a G-protein-coupled mechanism. Endocytosis of ORL1 receptor during prolonged N/OFQ exposure was proposed to cause N-type voltage-gated calcium channel (VGCC) internalization via physical interaction between ORL1 and the N-type channel. However, there is no direct electrophysiological evidence for this mechanism in dorsal root ganglion (DRG) neurons or their central nerve terminals. The present study tested this using whole-cell patch-clamp recordings of HVA I(Ca) in rat DRG neurons and primary afferent excitatory synaptic currents (eEPSCs) in spinal cord slices. DRG neurons were classified on the basis of diameter, isolectin-B4 (IB4) binding and responses to capsaicin, N/OFQ and a μ-opioid agonist, DAMGO. IB4-negative neurons less than 20 μm diameter were selectively responsive to N/OFQ as well as DAMGO. In these neurons, ORL1 desensitization by a supramaximal concentration of N/OFQ was not followed by a decrease in HVA I(Ca) current density or proportion of whole-cell HVA I(Ca) contributed by N-type VGCC as determined using the N-type channel selective blocker, ω-conotoxin CVID. There was also no decrease in the proportion of N-type I(Ca) when neurons were incubated at 37°C with N/OFQ for 30 min prior to recording. In spinal cord slices, N/OFQ consistently inhibited eEPSCs onto dorsal horn neurons. As observed in DRG neurons, preincubation of slices in N/OFQ for 30 min produced no decrease in the proportion of eEPSCs inhibited by CVID. In conclusion, no internalization of the N-type VGCC occurs in either the soma or central nerve terminals of DRG neurons following prolonged exposure to high, desensitizing concentrations of N/OFQ.NHMRC Grant: 056992

    Characterisation of Nav types endogenously expressed in human SH-SY5Y neuroblastoma cells

    Get PDF
    The human neuroblastoma cell line SH-SY5Y is a potentially useful model for the identification and characterisation of Na(v) modulators, but little is known about the pharmacology of their endogenously expressed Na(v)s. The aim of this study was to determine the expression of endogenous Na(v) α and β subunits in SH-SY5Y cells using PCR and immunohistochemical approaches, and pharmacologically characterise the Na(v) isoforms endogenously expressed in this cell line using electrophysiological and fluorescence approaches. SH-SY5Y human neuroblastoma cells were found to endogenously express several Na(v) isoforms including Na(v)1.2 and Na(v)1.7. Activation of endogenously expressed Na(v)s with veratridine or the scorpion toxin OD1 caused membrane depolarisation and subsequent Ca(2+) influx through voltage-gated L- and N-type calcium channels, allowing Na(v) activation to be detected with membrane potential and fluorescent Ca(2) dyes. μ-Conotoxin TIIIA and ProTxII identified Na(v)1.2 and Na(v)1.7 as the major contributors of this response. The Na(v)1.7-selective scorpion toxin OD1 in combination with veratridine produced a Na(v)1.7-selective response, confirming that endogenously expressed human Na(v)1.7 in SH-SY5Y cells is functional and can be synergistically activated, providing a new assay format for ligand screening.NHMRC Program Grant: 056992

    Fostering Equity and Diversity in the Nova Scotia Legal Profession

    Get PDF
    The Province of Nova Scotia has, for many years, attempted, through a variety of means, to address issues of diversity and affirmative action. However, despite the lessons of history there are still those who question the need for programs and policies that promote, encourage and enforce equality. Even though significant advances have been made on many fronts Nova Scotia continues to struggle with issues of inequality. As with many problems faced by society acknowledging the existence of the problem is the first step towards developing solutions

    Stabilization of the Cysteine-Rich Conotoxin MrIA by Using a 1,2,3-Triazole as a Disulfide Bond Mimetic

    Get PDF
    The design of disulfide bond mimetics is an important strategy for optimising cysteine-rich peptides in drug development. Mimetics of the drug lead conotoxin MrIA, in which one disulfide bond is selectively replaced of by a 1,4-disubstituted-1,2,3-triazole bridge, are described. Sequential copper-catalyzed azide–alkyne cycloaddition (CuAAC; click reaction) followed by disulfide formation resulted in the regioselective syntheses of triazole–disulfide hybrid MrIA analogues. Mimetics with a triazole replacing the Cys4–Cys13 disulfide bond retained tertiary structure and full in vitro and in vivo activity as norepinephrine reuptake inhibitors. Importantly, these mimetics are resistant to reduction in the presence of glutathione, thus resulting in improved plasma stability and increased suitability for drug development.NHMRC 1045964 & 107211

    Low intrinsic efficacy for G protein activation can explain the improved side-effect profile of new opioid agonists

    Get PDF
    Biased agonism at G protein–coupled receptors describes the phenomenon whereby some drugs can activate some downstream signaling activities to the relative exclusion of others. Descriptions of biased agonism focusing on the differential engagement of G proteins versus β-arrestins are commonly limited by the small response windows obtained in pathways that are not amplified or are less effectively coupled to receptor engagement, such as β-arrestin recruitment. At the μ-opioid receptor (MOR), G protein–biased ligands have been proposed to induce less constipation and respiratory depressant side effects than opioids commonly used to treat pain. However, it is unclear whether these improved safety profiles are due to a reduction in β-arrestin–mediated signaling or, alternatively, to their low intrinsic efficacy in all signaling pathways. Here, we systematically evaluated the most recent and promising MOR-biased ligands and assessed their pharmacological profile against existing opioid analgesics in assays not confounded by limited signal windows. We found that oliceridine, PZM21, and SR-17018 had low intrinsic efficacy. We also demonstrated a strong correlation between measures of efficacy for receptor activation, G protein coupling, and β-arrestin recruitment for all tested ligands. By measuring the antinociceptive and respiratory depressant effects of these ligands, we showed that the low intrinsic efficacy of opioid ligands can explain an improved side effect profile. Our results suggest a possible alternative mechanism underlying the improved therapeutic windows described for new opioid ligands, which should be taken into account for future descriptions of ligand action at this important therapeutic target

    HIV transmission risk behavior among HIV-positive patients receiving antiretroviral therapy in KwaZulu-Natal, South Africa.

    Get PDF
    CAPRISA, 2014.The aim of this investigation was to identify factors associated with HIV transmission risk behavior among HIV-positive women and men receiving antiretroviral therapy (ART) in KwaZulu-Natal, South Africa. Across 16 clinics, 1,890 HIV? patients on ART completed a risk-focused audio computer-assisted self-interview upon enrolling in a prevention-with-positives intervention trial. Results demonstrated that 62% of HIV-positive patients’ recent unprotected sexual acts involved HIV-negative or HIV status unknown partners. For HIV-positive women, multivariable correlates of unprotected sex with HIV-negative or HIV status unknown partners were indicative of poor HIV prevention-related information and of sexual partnership-associated behavioral skills barriers. For HIV positive men, multivariable correlates represented motivational barriers, characterized by negative condom attitudes and the experience of depressive symptomatology, as well as possible underlying information deficits. Findings suggest that interventions addressing gender-specific and culturally-relevant information, motivation, and behavioral skills barriers could help reduce HIV transmission risk behavior among HIV-positive South Africans

    A Postulate for Tiger Recovery: The Case of the Caspian Tiger

    Get PDF
    Recent genetic analysis has shown that the extinct Caspian Tiger (P. t. virgata) and the living Amur Tigers (P. t. altaica) of the Russian Far East are actually taxonomically synonymous and that Caspian and Amur groups historically formed a single population, only becoming separated within the last 200 years by human agency. A major conservation implication of this finding is that tigers of Amur stock might be reintroduced, not only back into the Koreas and China as is now proposed, but also through vast areas of Central Asia where the Caspian tiger once lived. However, under the current tiger conservation framework the 12 “Caspian Tiger States” are not fully involved in conservation planning. Equal recognition as “Tiger Range States” should be given to the countries where the Caspian tiger once lived and their involvement in tiger conservation planning encouraged. Today, preliminary ecological surveys show that some sparsely populated areas of Central Asia preserve natural habitat suitable for tigers. In depth assessments should be completed in these and other areas of the Caspian range to evaluate the possibility of tiger reintroductions. Because tigers are a charismatic umbrella species, both ecologically and politically, reintroduction to these landscapes would provide an effective conservation framework for the protection of many species in addition to tigers. And for today’s Amur Tigers this added range will provide a buffer against further loss of genetic diversity, one which will maintain that diversity in the face of selective pressures that can only be experienced in the wild

    Somatostatin Secreted by Islet δ-Cells Fulfills Multiple Roles as a Paracrine Regulator of Islet Function

    Get PDF
    OBJECTIVE— Somatostatin (SST) is secreted by islet δ-cells and by extraislet neuroendocrine cells. SST receptors have been identified on α- and β-cells, and exogenous SST inhibits insulin and glucagon secretion, consistent with a role for SST in regulating α- and β-cell function. However, the specific intraislet function of δ-cell SST remains uncertain. We have used Sst−/− mice to investigate the role of δ-cell SST in the regulation of insulin and glucagon secretion in vitro and in vivo
    corecore