This is an Accepted Manuscript of an article published by American Physiological Society in Journal of Neuropharmacology.

Final publication is available at <a href="http://jn.physiology.org/content/107/2/649.long">http://jn.physiology.org/content/107/2/649.long</a>

© Copy right of this Article is held by APS <u>http://www.the-aps.org/mm/Publications/Info-For-Authors/Copyright</u>

| 1  | Glutamate transporter dysfunction associated with nerve injury-induced pain in mice      |
|----|------------------------------------------------------------------------------------------|
| 2  | Ian A Napier, Sarasa A Mohamadi, MacDonald J Christie                                    |
| 3  | Discipline of Pharmacology, The University of Sydney, NSW 2006, Australia                |
| 4  |                                                                                          |
| 5  |                                                                                          |
| 6  | Running Head: Glutamate transporter dysfunction in neuropathic pain                      |
| 7  |                                                                                          |
| 8  |                                                                                          |
| 9  | Corresponding author: MJ Christie, Discipline of Pharmacology D06 University of Sydney   |
| 10 | NSW 2006, Australia. Email: mac.christie@sydney.edu.au. Phone: +61 2 9351 0899, Fax: +61 |
| 11 | 2 9114 4015                                                                              |
| 12 |                                                                                          |
| 13 |                                                                                          |
| 14 |                                                                                          |
| 15 |                                                                                          |

#### 16 Abstract

17 Dysfunction at glutamatergic synapses has been proposed as a mechanism in the 18 development of neuropathic pain. Here we sought to determine whether peripheral nerve 19 injury-induced neuropathic pain results in functional changes to primary afferent synapses. 20 Signs of neuropathic pain as well as an induction of glial fibrillary acidic protein in 21 immunostained spinal cord sections 4 days after partial ligation of the sciatic nerve 22 indicated the induction of neuropathic pain. We found that following nerve injury, no 23 discernable change to kinetics of AMPA or NMDA receptor (NMDAR)-mediated evoked 24 excitatory post synaptic currents (eEPSCs) could be observed in dorsal horn (lamina I/II) 25 neurons compared to those of naive mice. However, we did find that nerve injury was 26 accompanied by slowed decay of the early phase of eEPSCs in the presence of glutamate 27 transporter inhibition by the competitive non-transportable inhibitor DL-threo- $\beta$ -28 Benzyloxyaspartic acid (TBOA). Concomitantly, expression patterns for the two major 29 glutamate transporters in spinal cord, EAAT1 and EAAT2, were found to be reduced at this 30 time (4 days post-injury). We then sought to directly determine whether nerve injury results 31 in glutamate spillover to NMDARs at dorsal horn synapses. By employing the use-dependent 32 NMDAR blocker (±)MK-801 to block subsynaptic receptors, we found that although TBOA-33 induced spillover to extra-synaptic receptors trended to increased activation of these 34 receptors after nerve injury, this was not significant compared to naive mice. Together, 35 these results suggest the development of neuropathic pain involves subtle changes to 36 glutamate transporter expression and function that could contribute to neuropathic pain 37 during excessive synaptic activity.

#### 38 Keywords

39 Neuropathic pain, glutamate transport, spillover

#### 40 Introduction

The synaptic mechanisms associated with development of chronic neuropathic pain remain poorly understood (Graham *et al.* 2007). An interplay of both an increase in primary afferent activity or glutamate release, as well as an impairment of glutamate re-uptake at primary afferent synapses in the dorsal horn have been proposed as possible mechanisms for the development of neuropathic pain (Tsuda *et al.* 2005; Sandkuhler 2007; Scholz and Woolf 2007).

47 One of the key components of normal sensory neurotransmission is the tight coupling of 48 excitatory neurotransmitter release with rapid reuptake. Recovery of synaptic glutamate is 49 mediated by a family of specific high-affinity membrane transporters (Danbolt 2001), the 50 excitatory amino acid transporters (EAATs). Astrocytes express two such transporters, 51 EAAT1 (GLAST, Slc1a3) and EAAT2 (GLT-1, Slc1a2), which are together responsible for the 52 majority of synaptic glutamate re-uptake (Rothstein et al. 1994; Chaudhry et al. 1995; 53 Rothstein et al. 1996). A third, neuronal isoform, known as EAAT3 (EAAC1, Slc1a1) is also 54 found in the spinal cord, on primary afferents interneurons and motor neurons of the 55 ventral horn but plays only a limited role in synaptic glutamate re-uptake (Rothstein et al. 56 1994; Peghini et al. 1997; Stoffel et al. 2004; Sun et al. 2011). Intrathecal administration of 57 EAAT inhibitors produces pain behaviours suggesting that dysfunction of these transporters 58 may contribute to signs of neuropathic pain (Liaw et al. 2005; Weng et al. 2006). Findings of 59 pathological changes to astroglia during development of neuropathic pain have raised the

| 60 | possibility that EAAT function may be impaired in the vicinity of primary afferent synapses.  |
|----|-----------------------------------------------------------------------------------------------|
| 61 | Recent reports have indicated that spinal EAAT expression can both increase and decrease      |
| 62 | in the first 7 days following peripheral nerve injury in rodent neuropathic pain models (Sung |
| 63 | et al. 2003; Wang et al. 2006; Sung et al. 2007; Tawfik et al. 2008; Xin et al. 2009) with    |
| 64 | substantial losses at day 7 and beyond. It has also been shown that these expression          |
| 65 | changes coincide with the development of neuropathic pain. However, exactly how these         |
| 66 | expression changes contribute to altered glutamatergic synaptic transmission has not yet      |
| 67 | been fully elucidated.                                                                        |
| 68 | The aims of this study were therefore to determine if peripheral nerve injury influences the  |
| 69 | expression and uptake capacity of spinal glutamate transporters at functioning                |
| 70 | glutamatergic synapses in spinal cord of nerve injured mice during development of             |
| 71 | neuropathic pain. Although behavioural signs and markers of neuropathic pain such as          |
| 72 | astrocyte activation were observed after nerve injury, we found only a modest reduction in    |
| 73 | glutamate transporter expression after nerve injury and evidence for limited changes to       |
| 74 | glutamatergic transmission at primary afferent synapses that would be indicative of           |
| 75 | impaired glutamate uptake.                                                                    |
|    |                                                                                               |

# 77 Materials and Methods

# 78 Experimental animals

Animals used in the experiments outlined below were approved for use by The University of
Sydney and University of Technology Sydney Animal Ethics Committees. Experiments were

performed under the guidelines of the Australian code of practice for the care and use of
animals for scientific purposes (National Health and Medical Research Council, Australia, 7<sup>th</sup>
Edition). In all experiments unless otherwise stated, 6 – 8 week old inbred C57bl/6 male
mice were used (91 in total). Animals were kept in 12hr light/dark cycles with food
(standard rodent chow) and water provided ad libitum.

86

#### 87 Induction and behavioural assessment of nerve injury

88 Partial sciatic nerve ligation (PNL) was performed as described previously (Seltzer et al.

1990). Briefly, under isoflurane (Aerrane, Baxter) anaesthesia (2.5% in oxygen), the biceps

90 femoris muscle was blunt dissected to reveal the sciatic nerve proximal to its trifurcation.

91 Connective tissue surrounding the nerve was carefully removed to improve access. A spinal

92 hook was then used to lift the nerve without compression or stretching so that a single 6-0

silk suture could be threaded through approximately one-half of the nerve. This single

94 suture was tied tightly before returning the nerve to its original position. The musculature

95 was then sewn together with a single suture and the skin was brought together and closed

96 with cyanoacrylate glue (Vetbond<sup>™</sup>, 3M<sup>™</sup>).

97 The impact of nerve injury on hind paw weight bearing was assessed with a Linton

98 Incapacitance Tester (Linton Instrumentation, UK) prior to and 1, 4 and 7 days following

99 nerve injury (Strickland *et al.* 2008). Measurements were taken by averaging the

100 instantaneous force (measured as weight, in grams) applied to each hind-paw at pre-surgery

101 (baseline) and each day post-surgery. Each datum is the average of 4 measurements taken

at 10 second intervals. An incapacitance ratio was therefore derived as the force applied by
the injured hind paw / uninjured paw. Animals that failed to show a 25% or greater
reduction in their incapacitance ratio (7 of the 91 mice) were not used for biochemical or
electrophysiological experiments and were euthanized.
Immediately following incapacitance measurements, each animal was placed into a
plexiglass observation chamber (40cm x 20cm x 20cm) and was monitored for 5 min for
signs of spontaneous pain by scoring the number of events of hind-paw lifting, hind-paw

109 flicking or shaking, and hind paw tending. A composite score for each animal was calculated

- 110 by summing each score. As the mice were able to move freely about the enclosure, no
- scoring bias was applied to the affected paw.
- 112

## 113 Immunofluorescent detection of spinal glutamate transporters

114 Following sodium pentobarbital administration, mice were transcardially perfused with 10

115 ml of a heparin containing (3000 IU /L) flush solution (in mM; 154 NaCl, 58.8 NaNO<sub>3</sub>) before

116 perfusion with 100 ml of the fixation solution; 4% formaldehyde prepared in PBS (in mM;

117 25.3 NaH<sub>2</sub>PO<sub>4</sub>.H<sub>2</sub>O, 108 Na<sub>2</sub>HPO<sub>4</sub>, 154 NaCl). Spinal cords were removed following fixation

and post-fixed for 1 hour, before transferring to 30% sucrose/PBS to cryoprotect the cords.

- All steps used PBS as a buffer. Once sucrose had penetrated the cords (as determined by
- 120 cords sinking) they were snap-frozen in tissue support matrix (Tissue-Tek® O.C.T. compound,
- 121 Proscitech, Thuringowa, QLD, Australia) and stored at -80 °C until processed. Thirty

122 micrometer sections were then cut into PBS using a Leica cryostat (CM1850 UV) and stored

123 at 4  $^{\circ}$ C. Only sections from the lumbar enlargement (L3 – L5) were used for staining.

124 For immunofluorescent staining, 6 sections from each of 4 mice per time point (or 4 naive 125 mice, 12 mice in total) were permeabilised in 0.3% Triton-X100/PBS (wash buffer) for 10 126 minutes before blocking with 10% normal horse serum (NHS; EAAT1-2) or goat serum (for 127 GFAP) for 30 minutes. Sections were then transferred into the appropriate primary antibody 128 diluted in wash buffer (EAAT1 1:4,000 Millipore; EAAT2 1:400 Millipore; EAAT3 1:1000 129 Millipore; GFAP 1:1,000 Abcam) and incubated overnight at room temperature with gentle 130 agitation. Excess primary antibody was removed with three 10 minutes washes of wash 131 buffer before a 2 hour incubation in secondary antibody (EAAT1/2; anti-guinea pig A488, 132 Jackson ImmunoResearch, GFAP; anti-rabbit A488, Invitrogen<sup>™</sup>, EAAT3; anti-mouse Cy3, 133 Jackson ImmunoResearch). Finally, sections were washed again with three 10 minutes 134 washes with wash buffer before mounting onto glass slides with fluoromount-G (Southern 135 Biotech, Alabama, USA). Digital images of individual sections were taken at 10X optical 136 magnification on an epifluorescent microscope. Densitometry was performed using ImageJ 137 software (National Institutes of Health, Bethesda USA). For high magnification of GFAP-138 stained sections, 4 10X confocal images comprising 30 1µm z-sections were stitched 139 together using Photoshop<sup>®</sup> (Adobe, San Jose CA) to create one single image. Inlays are 140 comprised of 9, 60X confocal images comprising 30 1µm z-sections stitched together.

141

142 In vitro electrophysiology

| 143 | Spinal cord slices (340 $\mu$ m) from the lumbar enlargement L3-L5 (Rigaud <i>et al.</i> 2008) were                                                       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 144 | prepared from 24 nerve injured and 36 naive isoflurane anaesthetised mice on a Leica                                                                      |
| 145 | VT1200S vibrating blade microtome (Leica Microsystems, North Ryde, Australia) in ice-cold                                                                 |
| 146 | modified artificial cerebrospinal fluid (ACSF, in mM); choline chloride (120), glucose (11),                                                              |
| 147 | NaHCO <sub>3</sub> (25), KCl (2.5), NaH <sub>2</sub> PO <sub>4</sub> (1.4), CaCl <sub>2</sub> (0.5), MgCl <sub>2</sub> (7), atropine (0.001). Slices were |
| 148 | allowed to recover for 1 hour at room temperature in ACSF (in mM); NaCl (125), KCl (2.5),                                                                 |
| 149 | $NaH_2PO_4$ (1.25), $NaHCO_3$ (25), glucose (11), $MgCl_2$ (1.2), $CaCl_2$ (2.5) before being transferred                                                 |
| 150 | to a recording chamber where Dodt-contrast optics was used to identify lamina I/II                                                                        |
| 151 | superficial dorsal horn neurons for patch-clamp electrophysiology. The internal solution of                                                               |
| 152 | the recording pipette contained (in mM); CsCl (140), EGTA (10), HEPES (5), CaCl <sub>2</sub> (2), MgATP                                                   |
| 153 | (2), NaGTP (0.3), QX314 chloride (5) and had an osmolality of 290 mOsm. Drugs were                                                                        |
| 154 | superfused onto slices at a rate of 2 ml per minute in normal ACSF at a nominal $33^{\circ}$ C.                                                           |
| 155 | Whole-cell voltage clamp was performed using a Multiclamp 700B amplifier (Molecular                                                                       |
| 156 | Devices, Sunnyvale CA) interfaced to an intel processor-based iMac computer (Apple,                                                                       |
| 157 | Cupertino CA; Mac OS X 10.5) via an ITC-18 digitiser (Heka Elektronik, Ludwigshafen                                                                       |
| 158 | Germany). Electrically-evoked EPSCs (eEPSCs) were elicited by stimulating dorsal roots                                                                    |
| 159 | attached to the slice at 0.03Hz with bipolar tungsten electrodes so that an appropriately                                                                 |
| 160 | sized current was produced in recorded neurons, in the range of 100 – 800 pA. eEPSCs were                                                                 |
| 161 | sampled at 10 kHz and filtered at 4 kHz using Axograph X (Axograph Scientific, Australia).                                                                |
| 162 | AMPA receptor mediated currents were obtained by clamping the membrane potential at -                                                                     |
| 163 | 60 mV in the presence of picrotoxin (100 $\mu M$ ), strychnine (5 $\mu M$ ) and DL-AP5 (100 $\mu M$ ).                                                    |
| 164 | NMDA receptor mediated currents were obtained by clamping the membrane potential at                                                                       |

+40 mV in the presence of picrotoxin (100  $\mu$ M), strychnine (5  $\mu$ M) and CNQX (10  $\mu$ M).

166 Miniature EPSCs were filtered (4 kHz low-pass filter) and sampled at 10 kHz for on-line and

167 later off-line analysis, and were recorded in the presence of picrotoxin (100  $\mu$ M), strychnine

168 (5  $\mu$ M) and tetrodotoxin (1  $\mu$ M), to block GABAA, glycine and sodium channels, respectively.

169 Miniature EPSCs above a preset threshold (4 standard deviations above baseline noise) were

automatically detected by a sliding template algorithm, and then manually checked off-line.

171 Miniature EPSCs were then counted in 4 s epochs every 2 s to construct rate-time plots.

172 Data presented represent the average of at least 800 captured events over a minimum 5

173 minute interval for each condition (drug or vehicle) for each cell recorded (N = 4). Series

174 resistance (< 20 M $\Omega$ ) was compensated by 70-80% in all patch-clamp experiments.

175 Recordings were stopped if series resistance deviated by more than 20% of baseline.

176

#### 177 Data analysis and statistics

| 178 | Densitometry of immunohistochemistry was performed using imageJ (National Institutes of                    |
|-----|------------------------------------------------------------------------------------------------------------|
| 179 | Health, Bethseda, USA). Behavioural testing was recorded by the observer in a notebook                     |
| 180 | before being manually entered into Prism (Version 5 for Windows, GraphPad Software Inc.                    |
| 181 | California, USA) for statistical analysis and generation of graphs. Illustrations were prepared            |
| 182 | using Photoshop <sup>®</sup> CS4 and Illustrator <sup>®</sup> CS4 for Windows. Kinetics of AMPAR and NMDAR |
| 183 | evoked EPSCs were determined offline using the 'fit exponential' tool in Axograph on the                   |
| 184 | assembled average of 10 consecutive eEPSCs for each condition. The kinetics of                             |
| 185 | unperturbed (in the absence of uptake inhibitors) eEPSC decay were best described by a                     |

| 186 | single exponential. As with previous reports, the addition of a second exponential did not             |
|-----|--------------------------------------------------------------------------------------------------------|
| 187 | improve the quality of the fit (Grosskreutz et al. 2003). Rise and decay kinetics for each             |
| 188 | recording were only included for analysis if the assembled average trace was smooth                    |
| 189 | enough to confidently measure these parameters. The area under the curve was also                      |
| 190 | determined for each trace using Axograph. Statistical differences were determined using                |
| 191 | one-way ANOVA with Dunn's multiple comparisons post-test (Western blots, behavioural                   |
| 192 | tests) and student's t-test (immunohistochemistry, electrophysiology) in Prism.                        |
| 193 | Drugs                                                                                                  |
| 194 | Unless otherwise stated, all reagents were obtained from Sigma-Aldrich (St. Louis, Missouri,           |
| 195 | USA). Disodium CNQX, picrotoxin, strychnine, DL-TBOA and DL-AP5 were purchased from                    |
| 196 | Tocris (Bristol, UK). Tetrodotoxin and QX314 chloride were obtained from Alamone Labs Ltd.             |
| 197 | (Jerusalem, Israel).                                                                                   |
| 198 | Results                                                                                                |
| 199 |                                                                                                        |
| 200 | Nerve injury-induced signs of neuropathic pain and astrocyte activation                                |
| 201 | In agreement with previous reports, partial sciatic nerve ligation induced reliable signs of           |
| 202 | pain (Seltzer et al. 1990) as well as increased staining of GFAP (Coyle 1998; Narita et al.            |
| 203 | 2006). From as early as 24 hours post-surgery, nerve injured mice displayed a significant              |
| 204 | reduction in the force applied to the injured paw compared to baseline (Figure 1A. left/right          |
| 205 | ratio, baseline = $1.08 \pm 0.03$ vs. Day 1 = $0.44 \pm 0.02$ , P< $0.0001$ ; ANOVA). This change      |
| 206 | continued up to and beyond day 7 post-surgery (Day 4 = 0.51 $\pm$ 0.04, Day 7 = 0.58 $\pm$ 0.07, P< 10 |
|     |                                                                                                        |

207 0.0001; ANOVA). Similarly, signs of paw lifting, flicking and guarding remained elevated

during the 7 day post-surgical period (Figure 1B. Left vs. right Days 1, 4 and 7 P< 0.0001;

209 ANOVA). We examined the well established activation of astrocytes following PNL by

210 examining GFAP staining. As shown in Figure 1C the GFAP immunoreactivity was

- significantly elevated after nerve injury with the greatest effect being observed 4 days post-
- 212 injury.
- 213

## 214 Effect of PNL on expression of spinal glutamate transporters

Following nerve injury, perfusion-fixed mouse spinal cord was sectioned for immunohistochemical staining of glutamate transporters. Previous reports have indicated that both glial and neuronal spinal glutamate transporter expression is perturbed by nerve injury and inflammation (Harris *et al.* 1996; Sung *et al.* 2003; Wang *et al.* 2006; Wang *et al.* 2008; Xin *et al.* 2009).

| 220 | Modest decreases in astrocytic glutamate transporter expression were observed in              |
|-----|-----------------------------------------------------------------------------------------------|
| 221 | immunohistochemically stained sections of lumbar spinal cord at days 4 and 7 post-injury.     |
| 222 | The glial transporters, EAAT1 and EAAT2 (Figure 2A and B, resp.) showed small, persistent     |
| 223 | decreases in ipsilateral expression when compared to contralateral dorsal horn. For EAAT1,    |
| 224 | the approx. 7% decrease in optical density in the dorsal horn was not significant at either   |
| 225 | day 4 or 7 after injury. However, when both post-injury days were pooled, the decrease was    |
| 226 | significant (P < 0.05). For EAAT2, the 9% decreases in optical density for ipsilateral versus |
| 227 | contralateral dorsal horn were significantly reduced on both day 4 and day 7 after injury.    |

228 The small reduction in EAAT2 immunohistochemical staining was then further explored by 229 Western blot on crudely isolated dorsal horn soluble protein extracts in a separate group of 230 animals. In these experiments, no significant changes to total EAAT2 levels were found at 231 either post-injury time point (data not shown). As shown in figure 2D, no trends for changed 232 expression of EAAT3 were detected immunohistochemically. We should note however, that 233 the antibody used to detect EAAT3 was from the same species (mouse) as the experimental 234 animals and is most likely the cause of some non-specific staining, especially in the ventral 235 horn. However, in concurrent experiments performed without primary antibody (negative 236 controls), non-specific staining was not observed in the superficial dorsal horn where 237 analysis was performed (data not shown). Collectively, these data suggest that nerve injury 238 associated with development of neuropathic pain has only a modest impact on the 239 expression of glutamate transporters in the spinal dorsal horn.

240

#### 241 Effect of nerve injury on AMPAR synaptic current kinetics.

If the small reduction in immunohistochemical staining for the astrocyte glutamate transporters, EAAT1 and EAAT2, reflected reduced cell surface expression in the vicinity of excitatory synapses, then this could lead to reduced extrasynaptic glutamate reuptake. If this were to occur then kinetics of synaptic currents should be altered. We examined the kinetics of AMPAR and NMDAR mediated eEPSCs 4 days after injury because maximal effects on GFAP, as well as decreased expression of EAAT1 and EAAT2, were observed at that time.

| 249 | Example AMPAR- and NMDAR mediated eEPSCs are shown in figures 3A and 3B.                                    |
|-----|-------------------------------------------------------------------------------------------------------------|
| 250 | AMPAR and NMDAR eEPSC decay time constants were best fit by single exponentials as                          |
| 251 | previously described (Feldmeyer et al. 2002; Grosskreutz et al. 2003; Stubblefield and Benke                |
| 252 | 2010). Fitted time constants did not differ significantly for either the rise (naive; 0.95 $\pm$ 0.1        |
| 253 | ms, N = 12, injured; 1.0 ± 0.15 ms, N = 10) or decay (naive; 6.15 ± 0.74 ms, N = 23, injured;               |
| 254 | $6.65 \pm 0.95$ ms, N = 20) of AMPAR-mediated eEPSCs in naive vs. injured animals, measured                 |
| 255 | in the presence of DL-AP5 (100 $\mu$ M), picrotoxin (100 $\mu$ M) and strychnine (5 $\mu$ M). Similarly,    |
| 256 | NMDAR rise time and decay kinetics, measured in the presence of CNQX (10 $\mu$ M), picrotoxin               |
| 257 | (100 $\mu M$ ) and strychnine (5 $\mu M$ ), were not affected by nerve injury (rise; naive; 6.29 $\pm$ 1.09 |
| 258 | ms N = 8, injured; 6.63 ± 1.69 ms N = 6, decay; naive; 195.6 ± 24.18, N = 7, injured; 187.8 ±               |
| 259 | 28.82 N = 7). These findings suggest that impaired glutamate transporter activity might not                 |
| 260 | contribute greatly to primary afferent synaptic transmission after nerve injury.                            |
|     |                                                                                                             |

## 262 Effect of nerve injury on sensitivity of glutamate transporters to inhibition

Measures of unperturbed decay time constants could be an insensitive measure of reduced glutamate reuptake in the vicinity of synapses because decay kinetics of both AMPAR and NMDAR mediated synaptic currents are dominated by channel kinetics rather than glutamate reuptake (Dingledine *et al.* 1999). Such measures could also be confounded by possible changes in subunit composition of AMPARs or NMDARs in pain states (Vikman *et al.* 2008) although our data suggest that no such changes occur in mouse dorsal horn, 4 days after nerve injury. Therefore, to further explore whether enhanced spillover of synaptic 270 glutamate develops after nerve injury, eEPSCs were recorded in the presence of a moderate 271 concentration of a non-specific glutamate transport inhibitor, DL-*threo*- $\beta$ -Benzyloxyaspartic 272 acid (TBOA) (Shimamoto et al. 1998). By partially blocking glutamate reuptake to induce 273 detectable spillover from excitatory synapses, any pathologically enhanced spillover of 274 glutamate produced by nerve injury should be observed as an enhancement of these effects 275 as previously reported at other CNS synapses (Nie and Weng 2010). As expected in naive 276 animals, TBOA (30 and 100  $\mu$ M) potentiated the duration but not amplitude of AMPAR 277 eEPSCs in a concentration dependent manner by introducing the appearance of a second, 278 late phase to the decay of the eEPSC without affecting the early decay phase (Figure 4A,B). 279 As shown in figure 4B,  $100\mu$ M TBOA significantly increased the eEPSC late time constant (P = 280 0.015, from  $36.5 \pm 8.1$  ms to  $125.4 \pm 20.4$  ms, n = 6), as well as the area under the curve (P < 281 0.05, from  $1688 \pm 373$  pA.ms to  $6013 \pm 1269$  pA.ms, n = 6) in naive animals. Both measures 282 presumably reflect spillover of glutamate from subsynaptic to extrasynaptic sites and adjacent synapses. In dorsal horn neurons from untreated animals, transporter inhibition 283 284 had no significant effect on the early decay time constant (control =  $5.1 \pm 0.5$  ms,  $30 \mu M$  = 285  $5.6 \pm 1.6$  ms, 100  $\mu$ M = 6.0  $\pm$  1.2 ms), which is presumably dominated by decay kinetics of 286 channel opening (see also below).

In the presence of TBOA the addition of CNQX (10 µM in the continued presence of
DL-AP5, picrotoxin and strychnine) blocked all slow synaptic currents and nearly abolished
the fast component (n = 3). This suggests that the enhanced slow components of the eEPSC
induced by TBOA are mediated exclusively by AMPARs without any contribution from
mGluRs. mGluR-mediated slow eEPSCs have been reported in dorsal horn in the presence of

TBOA but only after high frequency stimulation of primary afferent fibres (Galik *et al.* 2008).
TBOA (100 μM but not 30 μM) also produced a small but significant inhibition of the
amplitude of eEPSCs (14 ± 1.8%), which could be mediated by spillover of glutamate to
presynaptic mGluR (Drew *et al.* 2008) or KA receptors (Perrais *et al.* 2010). A 30 μM
concentration of TBOA was therefore selected for subsequent experiments in nerve injured
tissue because it produced only a moderate enhancement of the eEPSC late decay time
constant without affecting amplitude.

299

300 If nerve injury does induce EAAT down-regulation in the vicinity of dorsal horn 301 primary afferent synapses, glutamate spillover might be enhanced by moderate EAAT 302 inhibition (30  $\mu$ M TBOA) to a greater extent in nerve injured than control animals (Figure 303 3C). As shown in figure 3D, TBOA significantly increased the early decay time constant in 304 dorsal horn neurons from nerve injured animals, suggesting that transporters in close 305 proximity to glutamate release sites might be functionally modified to increase spillover. 306 Alternatively, nerve injured mice could express more extra-synaptic AMPA receptors in close 307 proximity to release sites. Nerve injury did not greatly influence distal extra-synaptic 308 receptor activation as no change to area under the curve, or late decay time constant was 309 observed following transporter inhibition. These findings suggest that reduced EAAT activity 310 in the vicinity of primary afferent synapses, if it occurs after nerve injury, is not due to a 311 widespread reduction in glutamate uptake capacity but is restricted to proximal 312 extrasynaptic sites.

To ensure that the enhancing effects of TBOA on AMPAR kinetics were not due to presynaptic actions, miniature EPSCs (mEPSCs) were examined in naive animals. In the presence of 1μM tetrodotoxin (TTX), no significant changes to mEPSC decay, amplitude or frequency were observed during glutamate transporter inhibition in naive animals (100 μM TBOA, N = 4) (Figure 5). This is consistent with the finding that the early decay time constant of the eEPSC in uninjured mice was unaffected by TBOA and the expectation that mEPSCs, being sporadic quantal events should produce little spillover to extrasynaptic AMPARs.

321

322 If reduced perisynaptic glutamate transporter activity does indeed explain the 323 increased early decay time constant of AMPAR-mediated synaptic events via increased 324 spillover, then it might also be possible to detect increased spillover to NMDA receptors. To 325 address this, we utilised the use-dependent NMDA receptor blocker (+)-MK-801 to block 326 subsynaptic NMDARs before enhancing glutamate spillover with TBOA, as reported at this 327 synapse (Nie and Weng 2009). In this experiment, stable baseline NMDAR-mediated eEPSCs 328 (in the presence of CNQX) for dorsal horn neurons in whole-cell voltage-clamp (+40mV) 329 were established by electrically stimulating the dorsal roots at 0.03Hz (Figure 6Ai). Then 330 active/open NDMARs were blocked during a ten minute superfusion of 50  $\mu$ M MK-801. At 331 this time, subsynaptic NMDAR eEPSCs were completely blocked (Figure 6Aii). A ten minute 332 wash was then performed to remove unbound MK-801 whilst stimulation continued (Figure 333 6Aii). Following this, 100µM TBOA was superfused onto slices to generate glutamate

16

| 334 | spillover (Figure 6Aiii). As shown in figure 6A, this approach successfully induced glutamate    |
|-----|--------------------------------------------------------------------------------------------------|
| 335 | spillover and activation of extra-synaptic NMDARs. When performed in slices from nerve           |
| 336 | injured mice, no change in time to peak was observed (Figure 6B). However a small non-           |
| 337 | significant trend for increase in peak amplitude and area under the curve were observed.         |
| 338 | Collectively however, these findings suggest that no significant increase of spillover to extra- |
| 339 | synaptic NMDA receptors takes place following nerve injury. However, this does not rule out      |
| 340 | the possibility of increased spillover combined with reduced NMDAR expression.                   |
|     |                                                                                                  |

**-** ..

341

## 342 Discussion

343 The present study suggests that nerve injury associated with allodynia and astroglial 344 activation produces only small changes to expression and function of glutamate 345 transporters in the vicinity of primary afferent synapses. Our findings therefore argue 346 against a major role for a contribution of glutamate transporter dysfunction and glutamate 347 spillover in the development of neuropathic pain. It is well established that peripheral nerve 348 injury leads to changes in the expression and function of markers of glutamatergic 349 neurotransmission in the spinal dorsal horn. These changes are also thought to be 350 responsible, in part, for the development and maintenance of neuropathic pain (Tsuda et al. 351 2005; Sandkuhler 2007; Scholz and Woolf 2007; Vikman et al. 2008). One of the ways in 352 which this has been proposed to occur is a generalized down-regulation of glutamate 353 transporters in the vicinity of synapses and a concomitant increase in the expression and 354 function of glutamate receptors (Harris et al. 1996; Popratiloff et al. 1998; Garry et al. 2003; 355 Sung et al. 2003; Yang et al. 2004; Wang et al. 2006; Sung et al. 2007; Tawfik et al. 2008;

| 356 | Wang et al. 2008). For example, in rats, PNL induced an approximately 51% and 40%                 |
|-----|---------------------------------------------------------------------------------------------------|
| 357 | reduction in EAAT1 (Xin et al. 2009) and EAAT2 (Maeda et al. 2008; Xin et al. 2009),              |
| 358 | respectively, expression at day 7. In another model of neuropathic pain, chronic constriction     |
| 359 | injury (CCI), these losses are preceded by an increase in EAAT1-3 at day 4 (Sung et al. 2003;     |
| 360 | Wang et al. 2006). However, despite an overall increase in total protein at this time,            |
| 361 | glutamate reuptake activity was in fact lower than in sham-operated animals (Sung et al.          |
| 362 | 2003). In contrast to the studies above, we found that nerve injury resulted in modest            |
| 363 | decreases in expression over the same 4-7 day period. When we looked at EAAT2 expression          |
| 364 | further by Western blot, these reductions were lost. This may be due to transporter               |
| 365 | redistribution in astrocytes, exposing changes in epitope availability in                         |
| 366 | immunohistochemical studies. It is hard to reconcile the differences in EAAT expression           |
| 367 | observed between ours and previous studies. Others have reported increased expression of          |
| 368 | all three transporters up to 4 days after chronic constriction injury in rats (Sung et al., 2003) |
| 369 | but decreased expression after 7 days (Sung et al., 2003; Wang et al. 2006). Explanations         |
| 370 | could be that of species differences, as our experiments were performed in mice and not           |
| 371 | rat, or models used (partial nerve ligation versus chronic constriction injury). For example, in  |
| 372 | mice mechanical allodynia and expression changes of nociceptive markers (e.g. NK1) are            |
| 373 | typically restricted to the ipsilateral hind paw (Malmberg and Basbaum 1998), whereas in          |
| 374 | rat, these changes are bilateral. It has been shown previously partial nerve ligation and         |
| 375 | chronic constriction models induce contrasting phenotypes of hot and cold hyperalgesia as         |
| 376 | well as mechanical allodynia (Bennett and Xie 1988; Seltzer et al. 1990). These adaptations       |
| 377 | were thought to create conditions whereby synaptic glutamate has the potential to both            |

persist within the synapse but also to diffuse out of the synapse to bind extra-synaptic
receptors thereby enhancing primary afferent synaptic transmission and plasticity.

| 381 | To test whether or not this occurs at functioning synapses, we made use of the                      |
|-----|-----------------------------------------------------------------------------------------------------|
| 382 | broad-spectrum glutamate transport inhibitor TBOA to drive moderately increased                     |
| 383 | glutamate spillover in the spinal dorsal horn. By inhibiting all three transporters with 100        |
| 384 | $\mu M$ TBOA, a substantial late phase decay time constant for AMPARs was produced.                 |
| 385 | Furthermore, the area under the curve of the AMPAR current (current density) increased              |
| 386 | from 249% in 30 $\mu M$ TBOA to 384 % of control in 100 $\mu M$ TBOA, suggesting a significant role |
| 387 | for EAAT1 and EAAT2 in glutamate reuptake in the dorsal horn. Due to the rapid                      |
| 388 | desensitization of AMPARs following agonist binding, the facilitation of the synaptic current       |
| 389 | under these conditions is likely due to diffusion of synaptically released glutamate to             |
| 390 | proximal (early time constant) extra-synaptic AMPARs and more remote extrasynaptic                  |
| 391 | receptors and synapses (Beurrier et al. 2009).                                                      |
| 392 |                                                                                                     |
| 393 | If nerve-injury results in a basal increase in synaptic and perisynaptic glutamate                  |
| 394 | concentrations, then eEPSCs from nerve-injured mice should display slower decay kinetics            |
| 395 | than naïve mice, similar to that observed for TBOA-induced spillover. In the absence of             |
| 396 | TBOA, decay time constants did not differ between naive and nerve injured mice suggesting           |
| 397 | AMPAR composition in the vicinity of synapses is not greatly altered and spillover, if present,     |
| 398 | is modest. Interestingly, nerve injury was associated with an increased early decay time            |

399 constant of AMPARs, suggesting increased peri-synaptic glutamate spillover or,

400 alternatively, increased perisynaptic AMPAR density.

401

| 402 | This increased early decay time constant after nerve injury in the presence of TBOA               |
|-----|---------------------------------------------------------------------------------------------------|
| 403 | (30 $\mu$ M) does not appear to be due simply to increased sensitivity to TBOA. Firstly, the late |
| 404 | decay time constant was unaffected after nerve injury in this concentration of TBOA but was       |
| 405 | greatly enhanced in control tissue by a higher concentration of TBOA (100 $\mu$ M). Secondly,     |
| 406 | the early decay time constant was completely unaffected by the higher concentration of            |
| 407 | TBOA (100 $\mu M)$ in control spinal cord. These findings strongly suggest the increased early    |
| 408 | decay time constant observed in TBOA reflects either an increased density of extrasynaptic        |
| 409 | AMPARs that are silent in the absence of transporter inhibition or, alternatively impaired        |
| 410 | transporter (EAAT1 and/or EAAT2) activity in close proximity to synapses that enhances            |
| 411 | sensitivity to TBOA.                                                                              |
| 412 | In a similar study in rats by Nie and Weng (2010), an EAAT2-specific blocker,                     |
| 413 | dihydrokainate (DHK), significantly increased NMDAR EPSC amplitude, latency, duration and         |
| 414 | decay time in naive rats, but failed to elicit any response in nerve injured rats, suggesting     |
| 415 | complete loss of EAAT2 function despite expression levels of around 40% compared to               |
| 416 | controls. This finding is hard to reconcile with our results. However it should be noted that     |
| 417 | these experiments were performed at 8-14 days post-injury in rats, whereas our                    |
| 418 | electrophysiological recordings were made at day 4 post-injury in mice.                           |

419

420 The possibility that perisynaptic spillover is increased can also be tested by 421 examining the effect of TBOA on NMDARs after blockade of active subsynaptic receptors with MK-801. In this case there was no significant difference to the degree of extra-synaptic 422 423 NMDAR activation at primary afferent synapses from nerve injured animals. This 424 experiment therefore failed to confirm the interpretation that the increased early decay 425 time constants induced by TBOA in nerve injured animals was due to increased perisynaptic 426 glutamate spillover. There was, however, a non-significant trend for increased peak 427 amplitude of the extrasynaptic NMDAR-mediated eEPSC which is consistent with a small 428 increase in spillover. There are other potential explanations for the discrepancy between 429 the AMPAR and NMDAR-mediated results. It is possible that the increased early decay time 430 constant of the AMPAR-mediated eEPSC in the presence of TBOA reflects spillover to very 431 proximal extrasynaptic AMPARs or there may be an increase in extrasynaptic AMPAR 432 density following nerve injury rather than increased spillover per se. There is evidence for 433 AMPAR subunit adaptations during inflammatory pain that could be associated with 434 extrasynaptic insertion of AMPARs (Tao 2010) but whether or not similar adaptations 435 develop in nerve injury-induced pain is unknown. It is also possible that spillover to 436 extrasynaptic NMDARs in the presence of TBOA (100  $\mu$ M) is mediated more by receptors 437 more distal to release sites than the AMPARs contributing to the early decay phase 438 enhanced by nerve injury. If so, measured NMDAR spillover may be similar to the late decay 439 phase of the AMPAR-mediated eEPSC in the presence of TBOA that is unaffected by nerve 440 injury.

441

| 442 | In conclusion, the present study suggests that peripheral nerve injury at a time            |
|-----|---------------------------------------------------------------------------------------------|
| 443 | associated with neuropathic pain and astrocyte activation does not greatly influence the    |
| 444 | expression of astrocytic glutamate transporters in the superficial dorsal horn, nor does it |
| 445 | produce substantial extrasynaptic spillover of glutamate from primary afferent synapses.    |
| 446 | However, in the close vicinity of synapses, glutamate transporter function may be prone to  |
| 447 | ineffective uptake under extreme circumstances and lead to enhanced receptor activation.    |
|     |                                                                                             |

# 449 Acknowledgements

- 450 This work was supported by the NHMRC Program Grant 351446. MJC is supported by a
- 451 NHMRC Fellowship (SPRF, 511914).

# 453 Figure legends

| 454 | Figure 1. Effect of nerve injury on the development of neuropathic pain. A) Hind paw          |
|-----|-----------------------------------------------------------------------------------------------|
| 455 | incapacitance test revealing significant weight shift from left (injured) to right hind paw.  |
| 456 | Numbers in columns represent number of animals tested. B) PNL produces significant            |
| 457 | increase in the rate of spontaneous behaviours indicative of neuropathic pain. C) GFAP        |
| 458 | immunoreactivity in a spinal cord section from a nerve injured mouse (inj =                   |
| 459 | injured/ipsilateral) and histogram revealing significant increase in GFAP densitometry at day |
| 460 | 4 post-injury (N = 4 in each group).                                                          |
| 461 |                                                                                               |
| 462 | Figure 2. Effect of nerve injury on expression of spinal glutamate transporters.              |
| 463 | Immunohistochemistry of glutamate transporters EAAT1 (A), EAAT2 (B) and EAAT3 (C)             |
| 464 | following nerve injury reveals significant reduction of EAAT1 and EAAT2 between 4 and 7       |
| 465 | days (* = P < 0.05, inj = injured/ipsilateral side, N = 4 in each group).                     |
| 466 |                                                                                               |
| 467 | Figure 3. Effect of nerve injury on the kinetics of AMPAR and NMDAR-mediated eEPSCs.          |
| 468 | Example synaptic current traces from eEPSCs mediated by AMPAR (A) and NMDAR (B)               |
| 469 | reveal no significant change to rise or decay kinetics observed after nerve injury.           |
| 470 |                                                                                               |
| 471 | Figure 4. Effect of glutamate transporter inhibition on eEPSCs. A) Representative AMPAR       |

472 eEPSC showing effect of 30uM TBOA. Thin red lines depict fitted exponentials for early and

| 473 | late components of decay. B) Effects of 30 $\mu M$ and 100 $\mu M$ TBOA on parameters of AMPAR     |
|-----|----------------------------------------------------------------------------------------------------|
| 474 | eEPSCs in dorsal horn neurons from naive mice expressed as percentage of pre-TBOA                  |
| 475 | baseline. C) Representative current traces of naive vs. nerve injured mice AMPAR eEPSCs in         |
| 476 | the presence of TBOA (30 $\mu M$ ) compared to baseline. D) The effect of 30 $\mu M$ TBOA on eEPSC |
| 477 | amplitude, decay kinetics and AUC in naive vs. nerve injured mice (percentage increase; $*$ =      |
| 478 | P < 0.05, numbers within histograms represent number of cells; N).                                 |
|     |                                                                                                    |



481 before (CONTROL) and during application of TBOA. Enlarged is a single captured event from

482 a baseline recording. B) Representative mEPSC traces from averaged events in the presence

483 of TBOA. The histogram on the right reveals no deviation from baseline for decay,

amplitude, or rate, are observed in the presence of TBOA (N = 4). C) Cumulative probability

485 plots for current amplitude and rate in the presence of TBOA.

486

487 Figure 6. Effect of nerve injury on glutamate spillover to peri-synaptic NMDARs. A) Example

488 NMDAR current traces from a from a single dorsal horn neuron at baseline (i), following

489 washout of MK-801 (ii), and then after superfusion of TBOA (iii). Current traces are overlaid

- 490 for comparison in (iv). B) Effect of nerve injury on kinetics of peri-synaptic NMDARs in
- 491 presence of TBOA following sub-synaptic NMDAR blockade with MK-801. Numbers within
- 492 histogram represent numbers of cells (N).

493 References

| 494 | Bennett, G. J. and Y. K. Xie (1988). "A peripheral mononeuropathy in rat               |
|-----|----------------------------------------------------------------------------------------|
| 495 | that produces disorders of pain sensation like those seen in man."                     |
| 496 | <u>Pain</u> <b>33</b> (1): 87-107.                                                     |
| 497 | Beurrier, C., G. Bonvento, et al. (2009). "Role of glutamate transporters in           |
| 498 | corticostriatal synaptic transmission." <u>Neuroscience</u> <b>158</b> (4): 1608-      |
| 499 | 1615.                                                                                  |
| 500 | Chaudhry, F. A., K. P. Lehre, et al. (1995). "Glutamate transporters in glial          |
| 501 | plasma membranes: highly differentiated localizations revealed by                      |
| 502 | quantitative ultrastructural immunocytochemistry." <u>Neuron</u> <b>15</b> (3):        |
| 503 | 711-720.                                                                               |
| 504 | Coyle, D. E. (1998). "Partial peripheral nerve injury leads to activation of           |
| 505 | astroglia and microglia which parallels the development of allodynic                   |
| 506 | behavior." <u>Glia</u> <b>23</b> (1): 75-83.                                           |
| 507 | Danbolt, N. C. (2001). "Glutamate uptake." <u>Prog Neurobiol</u> <b>65</b> (1): 1-105. |
| 508 | Dingledine, R., K. Borges, et al. (1999). "The glutamate receptor ion                  |
| 509 | channels." <u>Pharmacol Rev</u> <b>51</b> (1): 7-61.                                   |
| 510 | Drew, G. M., V. A. Mitchell, et al. (2008). "Glutamate spillover modulates             |
| 511 | GABAergic synaptic transmission in the rat midbrain periaqueductal                     |
| 512 | grey via metabotropic glutamate receptors and endocannabinoid                          |
| 513 | signaling." <u>J Neurosci</u> <b>28</b> (4): 808-815.                                  |
| 514 | Feldmeyer, D., J. Lubke, et al. (2002). "Synaptic connections between layer 4          |
| 515 | spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel                    |
| 516 | cortex: physiology and anatomy of interlaminar signalling within a                     |
| 517 | cortical column." <u>J Physiol</u> <b>538</b> (Pt 3): 803-822.                         |
| 518 | Galik, J., D. H. Youn, et al. (2008). "Involvement of group I metabotropic             |
| 519 | glutamate receptors and glutamate transporters in the slow                             |
| 520 | excitatory synaptic transmission in the spinal cord dorsal horn."                      |
| 521 | <u>Neuroscience</u> <b>154</b> (4): 1372-1387.                                         |
| 522 | Garry, E. M., A. Moss, et al. (2003). "Specific involvement in neuropathic             |
| 523 | pain of AMPA receptors and adapter proteins for the GluR2 subunit."                    |
| 524 | <u>Mol Cell Neurosci</u> <b>24</b> (1): 10-22.                                         |
| 525 | Graham, B. A., A. M. Brichta, et al. (2007). "Moving from an averaged to               |
| 526 | specific view of spinal cord pain processing circuits." <u>J Neurophysiol</u>          |
| 527 | <b>98</b> (3): 1057-1063.                                                              |
| 528 | Grosskreutz, J., A. Zoerner, et al. (2003). "Kinetic properties of human               |
| 529 | AMPA-type glutamate receptors expressed in HEK293 cells." <u>Eur J</u>                 |
| 530 | <u>Neurosci</u> <b>17</b> (6): 1173-1178.                                              |
| 531 | Harris, J. A., M. Corsi, et al. (1996). "Upregulation of spinal glutamate              |
| 532 | receptors in chronic pain." <u>Neuroscience</u> <b>74</b> (1): 7-12.                   |

| 533 | Liaw, W. J., R. L. Stephens, Jr. <i>, et al.</i> (2005). "Spinal glutamate uptake is    |
|-----|-----------------------------------------------------------------------------------------|
| 534 | critical for maintaining normal sensory transmission in rat spinal                      |
| 535 | cord." <u>Pain</u> <b>115</b> (1-2): 60-70.                                             |
| 536 | Maeda, S., A. Kawamoto <i>, et al.</i> (2008). "Gene transfer of GLT-1, a glial         |
| 537 | glutamate transporter, into the spinal cord by recombinant                              |
| 538 | adenovirus attenuates inflammatory and neuropathic pain in rats."                       |
| 539 | <u>Mol Pain</u> <b>4</b> : 65.                                                          |
| 540 | Malmberg, A. B. and A. I. Basbaum (1998). "Partial sciatic nerve injury in              |
| 541 | the mouse as a model of neuropathic pain: behavioral and                                |
| 542 | neuroanatomical correlates." <u>Pain</u> <b>76</b> (1-2): 215-222.                      |
| 543 | Narita, M., T. Yoshida, et al. (2006). "Direct evidence for spinal cord                 |
| 544 | microglia in the development of a neuropathic pain-like state in                        |
| 545 | mice." <u>I Neurochem</u> <b>97</b> (5): 1337-1348.                                     |
| 546 | Nie, H. and H. R. Weng (2009). "Glutamate transporters prevent excessive                |
| 547 | activation of NMDA receptors and extrasynaptic glutamate spillover                      |
| 548 | in the spinal dorsal horn." <u>J Neurophysiol</u> <b>101</b> (4): 2041-2051.            |
| 549 | Nie, H. and H. R. Weng (2010). "Impaired glial glutamate uptake induces                 |
| 550 | extrasynaptic glutamate spillover in the spinal sensory synapses of                     |
| 551 | neuropathic rats." <u>J Neurophysiol</u> <b>103</b> (5): 2570-2580.                     |
| 552 | Peghini, P., J. Janzen, et al. (1997). "Glutamate transporter EAAC-1-deficient          |
| 553 | mice develop dicarboxylic aminoaciduria and behavioral                                  |
| 554 | abnormalities but no neurodegeneration." <u>EMBO J</u> 16(13): 3822-                    |
| 555 | 3832.                                                                                   |
| 556 | Perrais, D., J. Veran, et al. (2010). "Gating and permeation of kainate                 |
| 557 | receptors: differences unveiled." <u>Trends Pharmacol Sci</u> <b>31</b> (11): 516-      |
| 558 | 522.                                                                                    |
| 559 | Popratiloff, A., R. J. Weinberg, et al. (1998). "AMPA receptors at primary              |
| 560 | afferent synapses in substantia gelatinosa after sciatic nerve section."                |
| 561 | <u>Eur J Neurosci</u> <b>10</b> (10): 3220-3230.                                        |
| 562 | Rigaud, M., G. Gemes, et al. (2008). "Species and strain differences in rodent          |
| 563 | sciatic nerve anatomy: implications for studies of neuropathic pain."                   |
| 564 | <u>Pain</u> <b>136</b> (1-2): 188-201.                                                  |
| 565 | Rothstein, J. D., M. Dykes-Hoberg, et al. (1996). "Knockout of glutamate                |
| 566 | transporters reveals a major role for astroglial transport in                           |
| 567 | excitotoxicity and clearance of glutamate." <u>Neuron</u> <b>16</b> (3): 675-686.       |
| 568 | Rothstein, J. D., L. Martin, et al. (1994). "Localization of neuronal and glial         |
| 569 | glutamate transporters." <u>Neuron</u> <b>13</b> (3): 713-725.                          |
| 570 | Sandkuhler, J. (2007). "Understanding LTP in pain pathways." <u>Mol Pain</u> <b>3</b> : |
| 571 | 9.                                                                                      |

| 572 | Scholz, J. and C. J. Woolf (2007). "The neuropathic pain triad: neurons,                 |
|-----|------------------------------------------------------------------------------------------|
| 573 | immune cells and glia." <u>Nat Neurosci</u> <b>10</b> (11): 1361-1368.                   |
| 574 | Seltzer, Z., R. Dubner, et al. (1990). "A novel behavioral model of                      |
| 575 | neuropathic pain disorders produced in rats by partial sciatic nerve                     |
| 576 | injury." <u>Pain</u> <b>43</b> (2): 205-218.                                             |
| 577 | Shimamoto, K., B. Lebrun, et al. (1998). "DL-threo-beta-benzyloxyaspartate,              |
| 578 | a potent blocker of excitatory amino acid transporters." <u>Mol</u>                      |
| 579 | <u>Pharmacol</u> <b>53</b> (2): 195-201.                                                 |
| 580 | Stoffel, W., R. Korner, et al. (2004). "Functional analysis of glutamate                 |
| 581 | transporters in excitatory synaptic transmission of GLAST1 and                           |
| 582 | GLAST1/EAAC1 deficient mice." <u>Brain Res Mol Brain Res</u> 128(2):                     |
| 583 | 170-181.                                                                                 |
| 584 | Strickland, I. T., J. C. Martindale, <i>et al.</i> (2008). "Changes in the expression of |
| 585 | NaV1.7, NaV1.8 and NaV1.9 in a distinct population of dorsal root                        |
| 586 | ganglia innervating the rat knee joint in a model of chronic                             |
| 587 | inflammatory joint pain." <u>Eur I Pain</u> <b>12</b> (5): 564-572.                      |
| 588 | Stubblefield, E. A. and T. A. Benke (2010). "Distinct AMPA-type                          |
| 589 | glutamatergic synapses in developing rat CA1 hippocampus." [                             |
| 590 | <u>Neurophysiol</u> <b>104</b> (4): 1899-1912.                                           |
| 591 | Sun, W., K. M. Hoffman, et al. (2011). "Specificity and Actions of an                    |
| 592 | Arylaspartate Inhibitor of Glutamate Transport at the Schaffer                           |
| 593 | Collateral-CA1 Pyramidal Cell Synapse." <u>PLoS One</u> 6(8): e23765.                    |
| 594 | Sung, B., G. Lim, et al. (2003). "Altered expression and uptake activity of              |
| 595 | spinal glutamate transporters after nerve injury contribute to the                       |
| 596 | pathogenesis of neuropathic pain in rats." <u>J Neurosci</u> 23(7): 2899-                |
| 597 | 2910.                                                                                    |
| 598 | Sung, B., S. Wang, <i>et al.</i> (2007). "Altered spinal arachidonic acid turnover       |
| 599 | after peripheral nerve injury regulates regional glutamate                               |
| 600 | concentration and neuropathic pain behaviors in rats." Pain <b>131</b> (1-               |
| 601 | 2): 121-131.                                                                             |
| 602 | Tao, Y. X. (2010). "Dorsal horn alpha-amino-3-hydroxy-5-methyl-4-                        |
| 603 | isoxazolepropionic acid receptor trafficking in inflammatory pain."                      |
| 604 | <u>Anesthesiology</u> <b>112</b> (5): 1259-1265.                                         |
| 605 | Tawfik, V. L., M. R. Regan, et al. (2008). "Propentofylline-induced astrocyte            |
| 606 | modulation leads to alterations in glial glutamate promoter                              |
| 607 | activation following spinal nerve transection." <u>Neuroscience</u> <b>152</b> (4):      |
| 608 | 1086-1092.                                                                               |

| 609 | Tsuda, M., K. Inoue, et al. (2005). "Neuropathic pain and spinal microglia: a        |
|-----|--------------------------------------------------------------------------------------|
| 610 | big problem from molecules in "small" glia." <u>Trends Neurosci</u> <b>28</b> (2):   |
| 611 | 101-107.                                                                             |
| 612 | Vikman, K. S., B. K. Rycroft, et al. (2008). "Switch to Ca2+-permeable AMPA          |
| 613 | and reduced NR2B NMDA receptor-mediated neurotransmission at                         |
| 614 | dorsal horn nociceptive synapses during inflammatory pain in the                     |
| 615 | rat." <u>J Physiol</u> <b>586</b> (2): 515-527.                                      |
| 616 | Wang, S., G. Lim, et al. (2006). "Downregulation of spinal glutamate                 |
| 617 | transporter EAAC1 following nerve injury is regulated by central                     |
| 618 | glucocorticoid receptors in rats." <u>Pain</u> <b>120</b> (1-2): 78-85.              |
| 619 | Wang, W., Y. Wang, et al. (2008). "Temporal changes of astrocyte activation          |
| 620 | and glutamate transporter-1 expression in the spinal cord after                      |
| 621 | spinal nerve ligation-induced neuropathic pain." <u>Anat Rec (Hoboken)</u>           |
| 622 | <b>291</b> (5): 513-518.                                                             |
| 623 | Weng, H. R., J. H. Chen, et al. (2006). "Inhibition of glutamate uptake in the       |
| 624 | spinal cord induces hyperalgesia and increased responses of spinal                   |
| 625 | dorsal horn neurons to peripheral afferent stimulation."                             |
| 626 | <u>Neuroscience</u> <b>138</b> (4): 1351-1360.                                       |
| 627 | Xin, W. J., H. R. Weng, et al. (2009). "Plasticity in expression of the glutamate    |
| 628 | transporters GLT-1 and GLAST in spinal dorsal horn glial cells                       |
| 629 | following partial sciatic nerve ligation." <u>Mol Pain</u> <b>5</b> : 15.            |
| 630 | Yang, L., F. X. Zhang, <i>et al.</i> (2004). "Peripheral nerve injury induces trans- |
| 631 | synaptic modification of channels, receptors and signal pathways in                  |
| 632 | rat dorsal spinal cord." <u>Eur J Neurosci</u> <b>19</b> (4): 871-883.               |
| 633 |                                                                                      |













