41 research outputs found

    A Grafting Strategy for the Design of Improved G-Quadruplex Aptamers and High-Activity DNAzymes

    Get PDF
    Nucleic acid aptamers are generally obtained by in vitro selection. Some have G-rich consensus sequences with ability to fold into the four-stranded structures known as G-quadruplexes. A few G-quadruplex aptamers have proven to bind hemin to form a new class of DNAzyme with the peroxidase-like activity, which can be significantly promoted by appending an appropriate base-pairing duplex onto the G-quadruplex structures of aptamers. Knowing the structural role of base pairing, here we introduce a novel grafting strategy for the design of improved G-quadruplex aptamers and high-activity DNAzymes. To demonstrate this strategy, three existing G-quadruplex aptamers are chosen as the first generation. A base-pairing DNA duplex is grafted onto the G-quadruplex motif of the first generation aptamers. Consequently, three new aptamers with the quadruplex/duplex DNA structures are produced as the second generation. The hemin-binding affinities and DNAzyme functions of the second generation aptamers are characterized and compared with the first generation. The results indicate three G-quadruplex aptamers obtained by the grafting strategy have more excellent properties than the corresponding original aptamers. Our findings suggest that, if the structures and functions of existing aptamers are thoroughly known, the grafting strategy can be facilely utilized to improve the aptamer properties and thereby producing better next-generation aptamers. This provides a simple but effective approach to the design of nucleic acid aptamers and DNAzymes

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    Nucleic acid-based fluorescent probes and their analytical potential

    Get PDF
    It is well known that nucleic acids play an essential role in living organisms because they store and transmit genetic information and use that information to direct the synthesis of proteins. However, less is known about the ability of nucleic acids to bind specific ligands and the application of oligonucleotides as molecular probes or biosensors. Oligonucleotide probes are single-stranded nucleic acid fragments that can be tailored to have high specificity and affinity for different targets including nucleic acids, proteins, small molecules, and ions. One can divide oligonucleotide-based probes into two main categories: hybridization probes that are based on the formation of complementary base-pairs, and aptamer probes that exploit selective recognition of nonnucleic acid analytes and may be compared with immunosensors. Design and construction of hybridization and aptamer probes are similar. Typically, oligonucleotide (DNA, RNA) with predefined base sequence and length is modified by covalent attachment of reporter groups (one or more fluorophores in fluorescence-based probes). The fluorescent labels act as transducers that transform biorecognition (hybridization, ligand binding) into a fluorescence signal. Fluorescent labels have several advantages, for example high sensitivity and multiple transduction approaches (fluorescence quenching or enhancement, fluorescence anisotropy, fluorescence lifetime, fluorescence resonance energy transfer (FRET), and excimer-monomer light switching). These multiple signaling options combined with the design flexibility of the recognition element (DNA, RNA, PNA, LNA) and various labeling strategies contribute to development of numerous selective and sensitive bioassays. This review covers fundamentals of the design and engineering of oligonucleotide probes, describes typical construction approaches, and discusses examples of probes used both in hybridization studies and in aptamer-based assays

    Enzymatic sensing with organic electrochemical transistors

    No full text
    Since their development in the 1980's organic electrochemical transistors (OECTs) have attracted a great deal of interest for biosensor applications. Coupled with the current proliferation of organic semiconductor technologies, these devices have the potential to revolutionize healthcare by making point-of-care and home-based medical diagnostics widely available. Unfortunately, their mechanism of operation is poorly understood, and this hinders further development of this important technology. In this paper glucose sensors based on OECTs and the redox enzyme glucose oxidase are investigated. Through appropriate scaling of the transfer characteristics at various glucose concentrations, a universal curve describing device operation is shown to exist. This result elucidates the underlying device physics and establishes a connection between sensor response and analyte concentration. This improved understanding paves the way for rational optimization of enzymatic sensors based on organic electrochemical transistors. © The Royal Society of Chemistry

    Simple glucose sensors with micromolar sensitivity based on organic electrochemical transistors

    No full text
    A simple glucose biosensor with micromolar sensitivity is reported. The sensor utilizes a conducting polymer transistor, with a channel made out of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) and a Pt gate electrode. Glucose oxidase is used to confer specificity. It is shown that the sensor's response to glucose is well within the clinical range of glucose levels in human saliva. The sensitivity and range of detection of the sensor can be tuned by adjusting the magnitude of the gate bias. © 2006 Elsevier B.V. All rights reserved

    Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors

    No full text
    We report the integration of organic electrochemical transistors with a surface-directed microfluidic system. The end product is a chip in which an analyte solution is distributed in four separate measurement reservoirs, each containing a transistor that uses the analyte as an integral part of its device structure. The use of a surface-directed microfluidic system enables the distribution of the analyte solution without the application of external pressure. The use of this chip in the detection of multiple analytes is demonstrated. © The Royal Society of Chemistry

    Influence of the CD14 C260T promoter polymorphism on C-reactive protein levels in patients with coronary artery disease.

    No full text
    The CD14 receptor is an important mediator of inflammatory reactions, and its expression is under genetic control. The allelic variant of the C260T polymorphism located in the promoter region of the CD14 gene is associated with receptor expression and ischemic risk. To date, most studies assessing the functional implications of the C260T polymorphism have been performed under proinflammatory conditions (e.g., acute coronary syndromes), and whether gene sequence variations of the CD14 receptor have any functional effect on systemic inflammation in patients in a stable phase of their atherosclerotic disease process is unknown. Eighty-two patients with stable coronary artery disease were studied. High-sensitivity C-reactive protein (hs-CRP) was used as a measurement of systemic inflammation. The genotype distribution of the C260T polymorphism of the CD14 gene was as follows: CC in 18 of 82 patients (22%), TC in 48 of 82 patients (58.5%), and TT in 16 of 82 patients (19.5%). TT subjects had increased hs-CRP levels compared with carriers of the C allele (p = 0.04). A higher percentage of T allele homozygotes had hs-CRP levels > 0.3 mg/dl (p = 0.01). Homozygosis status of the T allele was independently associated with hs-CRP levels > 03 mg/dl (p = 0.004). In conclusion, these observations may support the findings in large-scale studies that T homozygotes of this functional polymorphism are at increased ischemic risk. (c) 2006 Elsevier Inc. All rights reserved

    Genetic analysis of post-mating reproductive barriers in hybridizing European Populus species

    Get PDF
    Molecular genetic analyses of experimental crosses provide important information on the strength and nature of post-mating barriers to gene exchange between divergent populations, which are topics of great interest to evolutionary geneticists and breeders. Although not a trivial task in long-lived organisms such as trees, experimental interspecific recombinants can sometimes be created through controlled crosses involving natural F₁'s. Here, we used this approach to understand the genetics of post-mating isolation and barriers to introgression in Populus alba and Populus tremula, two ecologically divergent, hybridizing forest trees. We studied 86 interspecific backcross (BC₁) progeny and >350 individuals from natural populations of these species for up to 98 nuclear genetic markers, including microsatellites, indels and single nucleotide polymorphisms, and inferred the origin of the cytoplasm of the cross with plastid DNA. Genetic analysis of the BC₁ revealed extensive segregation distortions on six chromosomes, and >90% of these (12 out of 13) favored P. tremula donor alleles in the heterospecific genomic background. Since selection was documented during early diploid stages of the progeny, this surprising result was attributed to epistasis, cyto-nuclear coadaptation, heterozygote advantage at nuclear loci experiencing introgression or a combination of these. Our results indicate that gene flow across ‘porous’ species barriers affects these poplars and aspens beyond neutral, Mendelian expectations and suggests the mechanisms responsible. Contrary to expectations, the Populus sex determination region is not protected from introgression. Understanding the population dynamics of the Populus sex determination region will require tests based on natural interspecific hybrid zones

    Admixture mapping of quantitative traits in Populus hybrid zones: power and limitations

    Get PDF
    Uncovering the genetic architecture of species differences is of central importance for understanding the origin and maintenance of biological diversity. Admixture mapping can be used to identify the number and effect sizes of genes that contribute to the divergence of ecologically important traits, even in taxa that are not amenable to laboratory crosses because of their long generation time or other limitations. Here, we apply admixture mapping to naturally occurring hybrids between two ecologically divergent Populus species. We map quantitative trait loci for eight leaf morphological traits using 77 mapped microsatellite markers from all 19 chromosomes of Populus. We apply multivariate linear regression analysis allowing the modeling of additive and non-additive gene action and identify several candidate genomic regions associated with leaf morphology using an information-theoretic approach. We perform simulation studies to assess the power and limitations of admixture mapping of quantitative traits in natural hybrid populations for a variety of genetic architectures and modes of gene action. Our results indicate that (1) admixture mapping has considerable power to identify the genetic architecture of species differences if sample sizes and marker densities are sufficiently high, (2) modeling of non-additive gene action can help to elucidate the discrepancy between genotype and phenotype sometimes seen in interspecific hybrids, and (3) the genetic architecture of leaf morphological traits in the studied Populus species involves complementary and overdominant gene action, providing the basis for rapid adaptation of these ecologically important forest trees
    corecore