188 research outputs found

    Development of functional ectopic compound eyes in scarabaeid beetles by knockdown of orthodenticle

    Get PDF
    Complex traits like limbs, brains, or eyes form through coordinated integration of diverse cell fates across developmental space and time, yet understanding how complexity and integration emerge from uniform, undifferentiated precursor tissues remains limited. Here, we use ectopic eye formation as a paradigm to investigate the emergence and integration of novel complex structures following massive ontogenetic perturbation. We show that down-regulation via RNAi of a single head patterning gene—orthodenticle—induces ectopic structures externally resembling compound eyes at the middorsal adult head of both basal and derived scarabaeid beetle species (Onthophagini and Oniticellini). Scanning electron microscopy documents ommatidial organization of these induced structures, while immunohistochemistry reveals the presence of rudimentary ommatidial lenses, crystalline cones, and associated neural-like tissue within them. Further, RNA-sequencing experiments show that after orthodenticle down-regulation, the transcriptional signature of the middorsal head—the location of ectopic eye induction—converges onto that of regular compound eyes, including up-regulation of several retina-specific genes. Finally, a light-aversion behavioral assay to assess functionality reveals that ectopic compound eyes can rescue the ability to respond to visual stimuli when wild-type eyes are surgically removed. Combined, our results show that knockdown of a single gene is sufficient for the middorsal head to acquire the competence to ectopically generate a functional compound eye-like structure. These findings highlight the buffering capacity of developmental systems, allowing massive genetic perturbations to be channeled toward orderly and functional developmental outcomes, and render ectopic eye formation a widely accessible paradigm to study the evolution of complex systems.Fil: Zattara, Eduardo Enrique. Indiana University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Macagno, Anna L. M.. Indiana University; Estados UnidosFil: Busey, Hannah A.. Indiana University; Estados UnidosFil: Moczek, Armin P.. Indiana University; Estados Unido

    Correlation between SERS of Pyridine and Electrochemical Response of Silver Electrodes in Halide-Free Alkaline Solutions

    Get PDF
    Surface-enhanced Raman scattering (SERS) of pyridine (Py) on Ag electrodes in alkaline solutions free of halide ions was obtained at 25°C as a function of the applied potential. The Ag surface was activated for SERS through repetitive oxidation-reduction cycles (ORC), the effect being dependent on the electrochemical electrode history. The SERS effect was correlated to the activation for the hydrogen evolution reaction (HER), which can be obtained by means of potentiodynamic as well as potentiostatic procedures. The maximum SERS activity was achieved at potentials near the potential of zero charge (pzc) of polycrystalline Ag and appeared to be related to the maximum observed in the roughness factor vs potential curve. These results can be interpreted through the formation of a new uniform globular overlayer structure on the electroreduced Ag surface, which apparently exhibits a certain degree of preferred crystallographic orientation. Three well-defined potential regions can be distinguished for the complex competitive interactions between H2O, OH- ion, and Py with the new Ag electrode surface.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Prenatal tobacco smoke exposure increases hospitalizations for bronchiolitis in infants

    Get PDF
    BACKGROUND: Tobacco smoke exposure (TSE) is a worldwide health problem and it is considered a risk factor for pregnant women's and children's health, particularly for respiratory morbidity during the first year of life. Few significant birth cohort studies on the effect of prenatal TSE via passive and active maternal smoking on the development of severe bronchiolitis in early childhood have been carried out worldwide. METHODS: From November 2009 to December 2012, newborns born at ≥ 33 weeks of gestational age (wGA) were recruited in a longitudinal multi-center cohort study in Italy to investigate the effects of prenatal and postnatal TSE, among other risk factors, on bronchiolitis hospitalization and/or death during the first year of life. RESULTS: Two thousand two hundred ten newborns enrolled at birth were followed-up during their first year of life. Of these, 120 (5.4%) were hospitalized for bronchiolitis. No enrolled infants died during the study period. Prenatal passive TSE and maternal active smoking of more than 15 cigarettes/daily are associated to a significant increase of the risk of offspring children hospitalization for bronchiolitis, with an adjHR of 3.5 (CI 1.5-8.1) and of 1.7 (CI 1.1-2.6) respectively. CONCLUSIONS: These results confirm the detrimental effects of passive TSE and active heavy smoke during pregnancy for infants' respiratory health, since the exposure significantly increases the risk of hospitalization for bronchiolitis in the first year of lif

    Risk factors for bronchiolitis hospitalization during the first year of life in a multicenter Italian birth cohort

    Get PDF
    BACKGROUND: Respiratory Syncytial Virus (RSV) is one of the main causes of respiratory infections during the first year of life. Very premature infants may contract more severe diseases and 'late preterm infants' may also be more susceptible to the infection. The aim of this study is to evaluate the risk factors for hospitalization during the first year of life in children born at different gestational ages in Italy. METHODS: A cohort of 33-34 weeks gestational age (wGA) newborns matched by sex and age with two cohort of newborns born at 35-37 wGA and > 37 wGA were enrolled in this study for a three-year period (2009-2012). Hospitalization for bronchiolitis (ICD-9 code 466.1) during the first year of life was assessed through phone interview at the end of the RSV season (November-March) and at the completion of the first year of life. RESULTS: The study enrolled 2314 newborns, of which 2210 (95.5 %) had a one year follow-up and were included in the analysis; 120 (5.4 %) were hospitalized during the first year of life for bronchiolitis. Children born at 33-34 wGA had a higher hospitalization rate compared to the two other groups. The multivariate analysis carried out on the entire population associated the following factors with higher rates for bronchiolitis hospitalization: male gender; prenatal treatment with corticosteroids; prenatal exposure to maternal smoking; singleton delivery; respiratory diseases in neonatal period; surfactant therapy; lack of breastfeeding; siblings <10 years old; living in crowded conditions and/or in unhealthy households and early exposure to the epidemic RSV season. When analysis was restricted to preterms born at 33-34 wGA the following variables were associated to higher rates of bronchiolitis hospitalization: male gender, prenatal exposure to maternal smoking, neonatal surfactant therapy, having siblings <10 years old, living in crowded conditions and being exposed to epidemic season during the first three months of life. CONCLUSION: Our study identified some prenatal, perinatal and postnatal conditions proving to be relevant and independent risk factors for hospitalization for bronchiolitis during the first year of life. The combination of these factors may lead to consider palivizumab prophylaxis in Italy

    The neuronal protein Neuroligin 1 promotes colorectal cancer progression by modulating the APC/β-catenin pathway

    Get PDF
    BACKGROUND: Colorectal cancer (CRC) remains largely incurable when diagnosed at the metastatic stage. Despite some advances in precision medicine for this disease in recent years, new molecular targets, as well as prognostic/predictive markers, are highly needed. Neuroligin 1 (NLGN1) is a transmembrane protein that interacts at the synapse with the tumor suppressor adenomatous polyposis Coli (APC), which is heavily involved in the pathogenesis of CRC and is a key player in the WNT/β-catenin pathway. METHODS: After performing expression studies of NLGN1 on human CRC samples, in this paper we used in vitro and in vivo approaches to study CRC cells extravasation and metastasis formation capabilities. At the molecular level, the functional link between APC and NLGN1 in the cancer context was studied. RESULTS: Here we show that NLGN1 is expressed in human colorectal tumors, including clusters of aggressive migrating (budding) single tumor cells and vascular emboli. We found that NLGN1 promotes CRC cells crossing of an endothelial monolayer (i.e. Trans-Endothelial Migration or TEM) in vitro, as well as cell extravasation/lung invasion and differential organ metastatization in two mouse models. Mechanistically, NLGN1 promotes APC localization to the cell membrane and co-immunoprecipitates with some isoforms of this protein stimulates β-catenin translocation to the nucleus, upregulates mesenchymal markers and WNT target genes and induces an “EMT phenotype” in CRC cell lines CONCLUSIONS: In conclusion, we have uncovered a novel modulator of CRC aggressiveness which impacts on a critical pathogenetic pathway of this disease, and may represent a novel therapeutic target, with the added benefit of carrying over substantial knowledge from the neurobiology field. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13046-022-02465-4

    Correlation between SERS of Pyridine and Electrochemical Response of Silver Electrodes in Halide-Free Alkaline Solutions

    Get PDF
    Surface-enhanced Raman scattering (SERS) of pyridine (Py) on Ag electrodes in alkaline solutions free of halide ions was obtained at 25°C as a function of the applied potential. The Ag surface was activated for SERS through repetitive oxidation-reduction cycles (ORC), the effect being dependent on the electrochemical electrode history. The SERS effect was correlated to the activation for the hydrogen evolution reaction (HER), which can be obtained by means of potentiodynamic as well as potentiostatic procedures. The maximum SERS activity was achieved at potentials near the potential of zero charge (pzc) of polycrystalline Ag and appeared to be related to the maximum observed in the roughness factor vs potential curve. These results can be interpreted through the formation of a new uniform globular overlayer structure on the electroreduced Ag surface, which apparently exhibits a certain degree of preferred crystallographic orientation. Three well-defined potential regions can be distinguished for the complex competitive interactions between H2O, OH- ion, and Py with the new Ag electrode surface.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Statutory Interpretation as Argumentation

    Get PDF
    This chapter proposes a dialectical approach to legal interpretation, consisting of three dimensions: a formalization of the canons of interpretation in terms of argumentation schemes; a dialectical classification of interpretive schemes; and a logical and computational model for comparing the arguments pro and contra an interpretation. The traditional interpretive maxims or canons used in both common and civil law are translated into defeasible patterns of arguments, which can be evaluated through sets of corresponding critical questions. These interpretive argumentation schemes are classified in general categories and a distinction is drawn between schemes supporting and rebutting an interpretation. This framework allows conceiving statutory interpretation as a dialectical procedure consisting in weighing arguments pro and contra an interpretation. This procedure is formalized and represented computationally through tools from formal argumentation systems

    FAK acts as a suppressor of RTK-MAP kinase signalling in Drosophila melanogaster epithelia and human cancer cells

    Get PDF
    Receptor Tyrosine Kinases (RTKs) and Focal Adhesion Kinase (FAK) regulate multiple signalling pathways, including mitogen-activated protein (MAP) kinase pathway. FAK interacts with several RTKs but little is known about how FAK regulates their downstream signalling. Here we investigated how FAK regulates signalling resulting from the overexpression of the RTKs RET and EGFR. FAK suppressed RTKs signalling in Drosophila melanogaster epithelia by impairing MAPK pathway. This regulation was also observed in MDA-MB-231 human breast cancer cells, suggesting it is a conserved phenomenon in humans. Mechanistically, FAK reduced receptor recycling into the plasma membrane, which resulted in lower MAPK activation. Conversely, increasing the membrane pool of the receptor increased MAPK pathway signalling. FAK is widely considered as a therapeutic target in cancer biology; however, it also has tumour suppressor properties in some contexts. Therefore, the FAK-mediated negative regulation of RTK/MAPK signalling described here may have potential implications in the designing of therapy strategies for RTK-driven tumours
    corecore