2,469 research outputs found

    The Pinhole/Occulter Facility

    Get PDF
    A large occulting system in space can be used for high resolution X-ray observations and for large aperture coronagraphic observations in visible and UV light. The X-ray observations can combine high angular resolution in hand (10 keV) X-radiation with the high sensitivity of a multiple pinhole camera, and can permit sensitive observations of bremsstrahlung from nonthermal particles in the corona. The large aperture coronagraphs have two major advantages: high angular resolution and good photon collection. This will permit observations of small scale structures in the corona for the first time and will give sufficient counting rates above the coronal background rates for sensitive diagnostic analysis of intensities and line profiles for coronal structures in the solar wind acceleration region. The technical basis for performing observations with a large occulting system in these three wavelength ranges is described as well as a pinhole/occulter facility presently being considered for Spacelab. Some indications about future developments are included

    Public Interest Immunity: Al Megrahi v HM Advocate

    Get PDF
    The Lockerbie case has already contributed significantly to the jurisprudence of the law of evidence. Al Megrahi v HM Advocate continues in that vein, shedding some light on how the law relating to public interest immunity now operates following devolution

    Elemental Abundances of Solar Sibling Candidates

    Get PDF
    Dynamical information along with survey data on metallicity and in some cases age have been used recently by some authors to search for candidates of stars that were born in the cluster where the Sun formed. We have acquired high resolution, high signal-to-noise ratio spectra for 30 of these objects to determine, using detailed elemental abundance analysis, if they could be true solar siblings. Only two of the candidates are found to have solar chemical composition. Updated modeling of the stars' past orbits in a realistic Galactic potential reveals that one of them, HD162826, satisfies both chemical and dynamical conditions for being a sibling of the Sun. Measurements of rare-element abundances for this star further confirm its solar composition, with the only possible exception of Sm. Analysis of long-term high-precision radial velocity data rules out the presence of hot Jupiters and confirms that this star is not in a binary system. We find that chemical tagging does not necessarily benefit from studying as many elements as possible, but instead from identifying and carefully measuring the abundances of those elements which show large star-to-star scatter at a given metallicity. Future searches employing data products from ongoing massive astrometric and spectroscopic surveys can be optimized by acknowledging this fact.Comment: ApJ, in press. Tables 2 and 4 are available in full in the "Other formats: source" downloa

    Exploring The Frequency Of Close-In Jovian Planets Around M Dwarfs

    Get PDF
    We discuss our high precision radial velocity results of a sample of 90 M dwarfs observed with the Hobby-Eberly Telescope and the Harlan J. Smith 2.7 m Telescope at McDonald Observatory, as well as the ESO VLT and the Keck I telescopes, within the context of the overall frequency of Jupiter-mass planetary companions to main sequence stars. None of the stars in our sample show variability indicative of a giant planet in a short period orbit, with a 3.8 M_Jup and a 3.5 M_Jup and a < 0.7 AU. Our results point toward a generally lower frequency of close-in Jovian planets for M dwarfs as compared to FGK-type stars. This is an important piece of information for our understanding of the process of planet formation as a function of stellar mass

    A New Approach to Time Domain Classification of Broadband Noise in Gravitational Wave Data

    Get PDF
    Broadband noise in gravitational wave (GW) detectors, also known as triggers, can often be a deterrant to the efficiency with which astrophysical search pipelines detect sources. It is important to understand their instrumental or environmental origin so that they could be eliminated or accounted for in the data. Since the number of triggers is large, data mining approaches such as clustering and classification are useful tools for this task. Classification of triggers based on a handful of discrete properties has been done in the past. A rich information content is available in the waveform or 'shape' of the triggers that has had a rather restricted exploration so far. This paper presents a new way to classify triggers deriving information from both trigger waveforms as well as their discrete physical properties using a sequential combination of the Longest Common Sub-Sequence (LCSS) and LCSS coupled with Fast Time Series Evaluation (FTSE) for waveform classification and the multidimensional hierarchical classification (MHC) analysis for the grouping based on physical properties. A generalized k-means algorithm is used with the LCSS (and LCSS+FTSE) for clustering the triggers using a validity measure to determine the correct number of clusters in absence of any prior knowledge. The results have been demonstrated by simulations and by application to a segment of real LIGO data from the sixth science run.Comment: 16 pages, 16 figure

    Can Streamer Blobs prevent the Buildup of the Interplanetetary Magnetic Field?

    Full text link
    Coronal Mass Ejections continuously drag closed magnetic field lines away from the Sun, adding new flux to the interplanetary magnetic field (IMF). We propose that the outward-moving blobs that have been observed in helmet streamers are evidence of ongoing, small-scale reconnection in streamer current sheets, which may play an important role in the prevention of an indefinite buildup of the IMF. Reconnection between two open field lines from both sides of a streamer current sheet creates a new closed field line, which becomes part of the helmet, and a disconnected field line, which moves outward. The blobs are formed by plasma from the streamer that is swept up in the trough of the outward moving field line. We show that this mechanism is supported by observations from SOHO/LASCO. Additionally, we propose a thorough statistical study to quantify the contribution of blob formation to the reduction of the IMF, and indicate how this mechanism may be verified by observations with SOHO/UVCS and the proposed NASA STEREO and ESA Polar Orbiter missions.Comment: 7 pages, 2 figures; accepted by The Astrophysical Journal Letters; uses AASTe

    Revised Stellar Properties of Kepler Targets for the Q1-17 (DR25) Transit Detection Run

    Get PDF
    The determination of exoplanet properties and occurrence rates using Kepler data critically depends on our knowledge of the fundamental properties (such as temperature, radius and mass) of the observed stars. We present revised stellar properties for 197,096 Kepler targets observed between Quarters 1-17 (Q1-17), which were used for the final transiting planet search run by the Kepler Mission (Data Release 25, DR25). Similar to the Q1--16 catalog by Huber et al. the classifications are based on conditioning published atmospheric parameters on a grid of Dartmouth isochrones, with significant improvements in the adopted methodology and over 29,000 new sources for temperatures, surface gravities or metallicities. In addition to fundamental stellar properties the new catalog also includes distances and extinctions, and we provide posterior samples for each stellar parameter of each star. Typical uncertainties are ~27% in radius, ~17% in mass, and ~51% in density, which is somewhat smaller than previous catalogs due to the larger number of improved logg constraints and the inclusion of isochrone weighting when deriving stellar posterior distributions. On average, the catalog includes a significantly larger number of evolved solar-type stars, with an increase of 43.5% in the number of subgiants. We discuss the overall changes of radii and masses of Kepler targets as a function of spectral type, with particular focus on exoplanet host stars.Comment: 19 pages, 13 figures. ApJS in pres
    • …
    corecore