2,035 research outputs found
Exploring The Frequency Of Close-In Jovian Planets Around M Dwarfs
We discuss our high precision radial velocity results of a sample of 90 M dwarfs observed with the Hobby-Eberly Telescope and the Harlan J. Smith 2.7 m Telescope at McDonald Observatory, as well as the ESO VLT and the Keck I telescopes, within the context of the overall frequency of Jupiter-mass planetary companions to main sequence stars. None of the stars in our sample show variability indicative of a giant planet in a short period orbit, with a 3.8 M_Jup and a 3.5 M_Jup and a < 0.7 AU. Our results point toward a generally lower frequency of close-in Jovian planets for M dwarfs as compared to FGK-type stars. This is an important piece of information for our understanding of the process of planet formation as a function of stellar mass
Long-lived, long-period radial velocity variations in Aldebaran: A planetary companion and stellar activity
We investigate the nature of the long-period radial velocity variations in
Alpha Tau first reported over 20 years ago. We analyzed precise stellar radial
velocity measurements for Alpha Tau spanning over 30 years. An examination of
the Halpha and Ca II 8662 spectral lines, and Hipparcos photometry was also
done to help discern the nature of the long-period radial velocity variations.
Our radial velocity data show that the long-period, low amplitude radial
velocity variations are long-lived and coherent. Furthermore, Halpha equivalent
width measurements and Hipparcos photometry show no significant variations with
this period. Another investigation of this star established that there was no
variability in the spectral line shapes with the radial velocity period. An
orbital solution results in a period of P = 628.96 +/- 0.90 d, eccentricity, e
= 0.10 +/- 0.05, and a radial velocity amplitude, K = 142.1 +/- 7.2 m/s.
Evolutionary tracks yield a stellar mass of 1.13 +/- 0.11 M_sun, which
corresponds to a minimum companion mass of 6.47 +/- 0.53 M_Jup with an orbital
semi-major axis of a = 1.46 +/- 0.27 AU. After removing the orbital motion of
the companion, an additional period of ~ 520 d is found in the radial velocity
data, but only in some time spans. A similar period is found in the variations
in the equivalent width of Halpha and Ca II. Variations at one-third of this
period are also found in the spectral line bisector measurements. The 520 d
period is interpreted as the rotation modulation by stellar surface structure.
Its presence, however, may not be long-lived, and it only appears in epochs of
the radial velocity data separated by 10 years. This might be due to an
activity cycle. The data presented here provide further evidence of a planetary
companion to Alpha Tau, as well as activity-related radial velocity variations.Comment: 18 pages, 14 figures. Accepted for publication in Astronomy and
Astrophysic
The Role of Pressure in Inverse Design for Assembly
Isotropic pairwise interactions that promote the self assembly of complex
particle morphologies have been discovered by inverse design strategies derived
from the molecular coarse-graining literature. While such approaches provide an
avenue to reproduce structural correlations, thermodynamic quantities such as
the pressure have typically not been considered in self-assembly applications.
In this work, we demonstrate that relative entropy optimization can be used to
discover potentials that self-assemble into targeted cluster morphologies with
a prescribed pressure when the iterative simulations are performed in the
isothermal-isobaric ensemble. By tuning the pressure in the optimization, we
generate a family of simple pair potentials that all self-assemble the same
structure. Selecting an appropriate simulation ensemble to control the
thermodynamic properties of interest is a general design strategy that could
also be used to discover interaction potentials that self-assemble structures
having, for example, a specified chemical potential.Comment: 29 pages, 8 figure
The Kepler Follow-up Observation Program
The Kepler Mission was launched on March 6, 2009 to perform a photometric
survey of more than 100,000 dwarf stars to search for terrestrial-size planets
with the transit technique. Follow-up observations of planetary candidates
identified by detection of transit-like events are needed both for
identification of astrophysical phenomena that mimic planetary transits and for
characterization of the true planets and planetary systems found by Kepler. We
have developed techniques and protocols for detection of false planetary
transits and are currently conducting observations on 177 Kepler targets that
have been selected for follow-up. A preliminary estimate indicates that between
24% and 62% of planetary candidates selected for follow-up will turn out to be
true planets.Comment: 12 pages, submitted to the Astrophysical Journal Letter
Revised Stellar Properties of Kepler Targets for the Q1-17 (DR25) Transit Detection Run
The determination of exoplanet properties and occurrence rates using Kepler
data critically depends on our knowledge of the fundamental properties (such as
temperature, radius and mass) of the observed stars. We present revised stellar
properties for 197,096 Kepler targets observed between Quarters 1-17 (Q1-17),
which were used for the final transiting planet search run by the Kepler
Mission (Data Release 25, DR25). Similar to the Q1--16 catalog by Huber et al.
the classifications are based on conditioning published atmospheric parameters
on a grid of Dartmouth isochrones, with significant improvements in the adopted
methodology and over 29,000 new sources for temperatures, surface gravities or
metallicities. In addition to fundamental stellar properties the new catalog
also includes distances and extinctions, and we provide posterior samples for
each stellar parameter of each star. Typical uncertainties are ~27% in radius,
~17% in mass, and ~51% in density, which is somewhat smaller than previous
catalogs due to the larger number of improved logg constraints and the
inclusion of isochrone weighting when deriving stellar posterior distributions.
On average, the catalog includes a significantly larger number of evolved
solar-type stars, with an increase of 43.5% in the number of subgiants. We
discuss the overall changes of radii and masses of Kepler targets as a function
of spectral type, with particular focus on exoplanet host stars.Comment: 19 pages, 13 figures. ApJS in pres
The architecture of the hierarchical triple star KOI 928 from eclipse timing variations seen in Kepler photometry
We present a hierarchical triple star system (KIC 9140402) where a low mass
eclipsing binary orbits a more massive third star. The orbital period of the
binary (4.98829 Days) is determined by the eclipse times seen in photometry
from NASA's Kepler spacecraft. The periodically changing tidal field, due to
the eccentric orbit of the binary about the tertiary, causes a change in the
orbital period of the binary. The resulting eclipse timing variations provide
insight into the dynamics and architecture of this system and allow the
inference of the total mass of the binary ()
and the orbital parameters of the binary about the central star.Comment: Submitted to MNRAS Letters. Additional tables with eclipse times are
included here. The Kepler data that was used for the analysis of this system
(Q1 through Q6) will be available on MAST after June 27, 201
Kepler-47: A Transiting Circumbinary Multi-Planet System
We report the detection of Kepler-47, a system consisting of two planets
orbiting around an eclipsing pair of stars. The inner and outer planets have
radii 3.0 and 4.6 times that of the Earth, respectively. The binary star
consists of a Sun-like star and a companion roughly one-third its size,
orbiting each other every 7.45 days. With an orbital period of 49.5 days,
eighteen transits of the inner planet have been observed, allowing a detailed
characterization of its orbit and those of the stars. The outer planet's
orbital period is 303.2 days, and although the planet is not Earth-like, it
resides within the classical "habitable zone", where liquid water could exist
on an Earth-like planet. With its two known planets, Kepler-47 establishes that
close binary stars can host complete planetary systems.Comment: To appear on Science Express August 28, 11 pages, 3 figures, one
table (main text), 56 pages, 28 figures, 10 table
Recommended from our members
Environmental Protection Department Operations and Regulatory Affairs Division LLNL NESHAPs 2005 Annual Report
This annual report is prepared pursuant to the National Emission Standards for Hazardous Air Pollutants (NESHAPs; Title 40 Code of Federal Regulations [CFR] Part 61, Subpart H). Subpart H governs radionuclide emissions to air from Department of Energy (DOE) facilities. NESHAPs limits the emission of radionuclides to the ambient air from DOE facilities to levels resulting in an annual effective dose equivalent (EDE) of 10 mrem (100 {micro}Sv) to any member of the public. The EDEs for the Lawrence Livermore National Laboratory (LLNL) site-wide maximally exposed members of the public from operations in 2005 are summarized here. Livermore site: 0.0065 mrem (0.065 {micro}Sv) (41% from point source emissions, 59% from diffuse source emissions). The point source emissions include gaseous tritium modeled as tritiated water vapor as directed by EPA Region IX; the resulting dose is used for compliance purposes. Site 300: 0.018 mrem (0.18 {micro}Sv) (48% from point source emissions, 52% from diffuse source emissions). The EDEs were calculated using the EPA-approved CAP88-PC air dispersion/dose-assessment model, except for doses for two diffuse sources that were estimated using measured radionuclide concentrations and dose coefficients. Specific inputs to CAP88-PC for the modeled sources included site-specific meteorological data and source emissions data, the latter variously based on continuous stack effluent monitoring data, stack flow or other release-rate information, ambient air monitoring data, and facility knowledge
The genetic basis for panicle trait variation in switchgrass (Panicum virgatum)
Key message: We investigate the genetic basis of panicle architecture in switchgrass in two mapping populations across a latitudinal gradient, and find many stable, repeatable genetic effects and limited genetic interactions with the environment. Abstract: Grass species exhibit large diversity in panicle architecture influenced by genes, the environment, and their interaction. The genetic study of panicle architecture in perennial grasses is limited. In this study, we evaluate the genetic basis of panicle architecture including panicle length, primary branching number, and secondary branching number in an outcrossed switchgrass QTL population grown across ten field sites in the central USA through multi-environment mixed QTL analysis. We also evaluate genetic effects in a diversity panel of switchgrass grown at three of the ten field sites using genome-wide association (GWAS) and multivariate adaptive shrinkage. Furthermore, we search for candidate genes underlying panicle traits in both of these independent mapping populations. Overall, 18 QTL were detected in the QTL mapping population for the three panicle traits, and 146 unlinked genomic regions in the diversity panel affected one or more panicle trait. Twelve of the QTL exhibited consistent effects (i.e., no QTL by environment interactions or no QTL × E), and most (four of six) of the effects with QTL × E exhibited site-specific effects. Most (59.3%) significant partially linked diversity panel SNPs had significant effects in all panicle traits and all field sites and showed pervasive pleiotropy and limited environment interactions. Panicle QTL co-localized with significant SNPs found using GWAS, providing additional power to distinguish between true and false associations in the diversity panel
- …