2,481 research outputs found
The Pinhole/Occulter Facility
A large occulting system in space can be used for high resolution X-ray observations and for large aperture coronagraphic observations in visible and UV light. The X-ray observations can combine high angular resolution in hand (10 keV) X-radiation with the high sensitivity of a multiple pinhole camera, and can permit sensitive observations of bremsstrahlung from nonthermal particles in the corona. The large aperture coronagraphs have two major advantages: high angular resolution and good photon collection. This will permit observations of small scale structures in the corona for the first time and will give sufficient counting rates above the coronal background rates for sensitive diagnostic analysis of intensities and line profiles for coronal structures in the solar wind acceleration region. The technical basis for performing observations with a large occulting system in these three wavelength ranges is described as well as a pinhole/occulter facility presently being considered for Spacelab. Some indications about future developments are included
Public Interest Immunity: Al Megrahi v HM Advocate
The Lockerbie case has already contributed significantly to the jurisprudence of the law of evidence. Al Megrahi v HM Advocate continues in that vein, shedding some light on how the law relating to public interest immunity now operates following devolution
Elemental Abundances of Solar Sibling Candidates
Dynamical information along with survey data on metallicity and in some cases
age have been used recently by some authors to search for candidates of stars
that were born in the cluster where the Sun formed. We have acquired high
resolution, high signal-to-noise ratio spectra for 30 of these objects to
determine, using detailed elemental abundance analysis, if they could be true
solar siblings. Only two of the candidates are found to have solar chemical
composition. Updated modeling of the stars' past orbits in a realistic Galactic
potential reveals that one of them, HD162826, satisfies both chemical and
dynamical conditions for being a sibling of the Sun. Measurements of
rare-element abundances for this star further confirm its solar composition,
with the only possible exception of Sm. Analysis of long-term high-precision
radial velocity data rules out the presence of hot Jupiters and confirms that
this star is not in a binary system. We find that chemical tagging does not
necessarily benefit from studying as many elements as possible, but instead
from identifying and carefully measuring the abundances of those elements which
show large star-to-star scatter at a given metallicity. Future searches
employing data products from ongoing massive astrometric and spectroscopic
surveys can be optimized by acknowledging this fact.Comment: ApJ, in press. Tables 2 and 4 are available in full in the "Other
formats: source" downloa
Exploring The Frequency Of Close-In Jovian Planets Around M Dwarfs
We discuss our high precision radial velocity results of a sample of 90 M dwarfs observed with the Hobby-Eberly Telescope and the Harlan J. Smith 2.7 m Telescope at McDonald Observatory, as well as the ESO VLT and the Keck I telescopes, within the context of the overall frequency of Jupiter-mass planetary companions to main sequence stars. None of the stars in our sample show variability indicative of a giant planet in a short period orbit, with a 3.8 M_Jup and a 3.5 M_Jup and a < 0.7 AU. Our results point toward a generally lower frequency of close-in Jovian planets for M dwarfs as compared to FGK-type stars. This is an important piece of information for our understanding of the process of planet formation as a function of stellar mass
A New Approach to Time Domain Classification of Broadband Noise in Gravitational Wave Data
Broadband noise in gravitational wave (GW) detectors, also known as triggers,
can often be a deterrant to the efficiency with which astrophysical search
pipelines detect sources. It is important to understand their instrumental or
environmental origin so that they could be eliminated or accounted for in the
data. Since the number of triggers is large, data mining approaches such as
clustering and classification are useful tools for this task. Classification of
triggers based on a handful of discrete properties has been done in the past. A
rich information content is available in the waveform or 'shape' of the
triggers that has had a rather restricted exploration so far. This paper
presents a new way to classify triggers deriving information from both trigger
waveforms as well as their discrete physical properties using a sequential
combination of the Longest Common Sub-Sequence (LCSS) and LCSS coupled with
Fast Time Series Evaluation (FTSE) for waveform classification and the
multidimensional hierarchical classification (MHC) analysis for the grouping
based on physical properties. A generalized k-means algorithm is used with the
LCSS (and LCSS+FTSE) for clustering the triggers using a validity measure to
determine the correct number of clusters in absence of any prior knowledge. The
results have been demonstrated by simulations and by application to a segment
of real LIGO data from the sixth science run.Comment: 16 pages, 16 figure
Can Streamer Blobs prevent the Buildup of the Interplanetetary Magnetic Field?
Coronal Mass Ejections continuously drag closed magnetic field lines away
from the Sun, adding new flux to the interplanetary magnetic field (IMF). We
propose that the outward-moving blobs that have been observed in helmet
streamers are evidence of ongoing, small-scale reconnection in streamer current
sheets, which may play an important role in the prevention of an indefinite
buildup of the IMF. Reconnection between two open field lines from both sides
of a streamer current sheet creates a new closed field line, which becomes part
of the helmet, and a disconnected field line, which moves outward. The blobs
are formed by plasma from the streamer that is swept up in the trough of the
outward moving field line. We show that this mechanism is supported by
observations from SOHO/LASCO. Additionally, we propose a thorough statistical
study to quantify the contribution of blob formation to the reduction of the
IMF, and indicate how this mechanism may be verified by observations with
SOHO/UVCS and the proposed NASA STEREO and ESA Polar Orbiter missions.Comment: 7 pages, 2 figures; accepted by The Astrophysical Journal Letters;
uses AASTe
Revised Stellar Properties of Kepler Targets for the Q1-17 (DR25) Transit Detection Run
The determination of exoplanet properties and occurrence rates using Kepler
data critically depends on our knowledge of the fundamental properties (such as
temperature, radius and mass) of the observed stars. We present revised stellar
properties for 197,096 Kepler targets observed between Quarters 1-17 (Q1-17),
which were used for the final transiting planet search run by the Kepler
Mission (Data Release 25, DR25). Similar to the Q1--16 catalog by Huber et al.
the classifications are based on conditioning published atmospheric parameters
on a grid of Dartmouth isochrones, with significant improvements in the adopted
methodology and over 29,000 new sources for temperatures, surface gravities or
metallicities. In addition to fundamental stellar properties the new catalog
also includes distances and extinctions, and we provide posterior samples for
each stellar parameter of each star. Typical uncertainties are ~27% in radius,
~17% in mass, and ~51% in density, which is somewhat smaller than previous
catalogs due to the larger number of improved logg constraints and the
inclusion of isochrone weighting when deriving stellar posterior distributions.
On average, the catalog includes a significantly larger number of evolved
solar-type stars, with an increase of 43.5% in the number of subgiants. We
discuss the overall changes of radii and masses of Kepler targets as a function
of spectral type, with particular focus on exoplanet host stars.Comment: 19 pages, 13 figures. ApJS in pres
- …