52 research outputs found

    Population genetics of the highly polymorphic RPP8 gene family

    Get PDF
    Plant nucleotide-binding domain and leucine-rich repeat containing (NLR) genes provide some of the most extreme examples of polymorphism in eukaryotic genomes, rivalling even the vertebrate major histocompatibility complex. Surprisingly, this is also true in Arabidopsis thaliana, a predominantly selfing species with low heterozygosity. Here, we investigate how gene duplication and intergenic exchange contribute to this extraordinary variation. RPP8 is a three-locus system that is configured chromosomally as either a direct-repeat tandem duplication or as a single copy locus, plus a locus 2 Mb distant. We sequenced 48 RPP8 alleles from 37 accessions of A. thaliana and 12 RPP8 alleles from Arabidopsis lyrata to investigate the patterns of interlocus shared variation. The tandem duplicates display fixed differences and share less variation with each other than either shares with the distant paralog. A high level of shared polymorphism among alleles at one of the tandem duplicates, the single-copy locus and the distal locus, must involve both classical crossing over and intergenic gene conversion. Despite these polymorphism-enhancing mechanisms, the observed nucleotide diversity could not be replicated under neutral forward-in-time simulations. Only by adding balancing selection to the simulations do they approach the level of polymorphism observed at RPP8. In this NLR gene triad, genetic architecture, gene function and selection all combine to generate diversity

    Genetic Associations in Four Decades of Multienvironment Trials Reveal Agronomic Trait Evolution in Common Bean

    Get PDF
    Multienvironment trials (METs) are widely used to assess the performance of promising crop germplasm. Though seldom designed to elucidate genetic mechanisms, MET data sets are often much larger than could be duplicated for genetic research and, given proper interpretation, may offer valuable insights into the genetics of adaptation across time and space. The Cooperative Dry Bean Nursery (CDBN) is a MET for common bean (Phaseolus vulgaris) grown for . 70 years in the United States and Canada, consisting of 20–50 entries each year at 10–20 locations. The CDBN provides a rich source of phenotypic data across entries, years, and locations that is amenable to genetic analysis. To study stable genetic effects segregating in this MET, we conducted genome-wide association studies (GWAS) using best linear unbiased predictions derived across years and locations for 21 CDBN phenotypes and genotypic data (1.2 million SNPs) for 327 CDBN genotypes. The value of this approach was confirmed by the discovery of three candidate genes and genomic regions previously identified in balanced GWAS. Multivariate adaptive shrinkage (mash) analysis, which increased our power to detect significant correlated effects, found significant effects for all phenotypes. Mash found two large genomic regions with effects on multiple phenotypes, supporting a hypothesis of pleiotropic or linked effects that were likely selected on in pursuit of a crop ideotype. Overall, our results demonstrate that statistical genomics approaches can be used on MET phenotypic data to discover significant genetic effects and to define genomic regions associated with crop improvement

    The genetic basis for panicle trait variation in switchgrass (Panicum virgatum)

    Get PDF
    Key message: We investigate the genetic basis of panicle architecture in switchgrass in two mapping populations across a latitudinal gradient, and find many stable, repeatable genetic effects and limited genetic interactions with the environment. Abstract: Grass species exhibit large diversity in panicle architecture influenced by genes, the environment, and their interaction. The genetic study of panicle architecture in perennial grasses is limited. In this study, we evaluate the genetic basis of panicle architecture including panicle length, primary branching number, and secondary branching number in an outcrossed switchgrass QTL population grown across ten field sites in the central USA through multi-environment mixed QTL analysis. We also evaluate genetic effects in a diversity panel of switchgrass grown at three of the ten field sites using genome-wide association (GWAS) and multivariate adaptive shrinkage. Furthermore, we search for candidate genes underlying panicle traits in both of these independent mapping populations. Overall, 18 QTL were detected in the QTL mapping population for the three panicle traits, and 146 unlinked genomic regions in the diversity panel affected one or more panicle trait. Twelve of the QTL exhibited consistent effects (i.e., no QTL by environment interactions or no QTL Ă— E), and most (four of six) of the effects with QTL Ă— E exhibited site-specific effects. Most (59.3%) significant partially linked diversity panel SNPs had significant effects in all panicle traits and all field sites and showed pervasive pleiotropy and limited environment interactions. Panicle QTL co-localized with significant SNPs found using GWAS, providing additional power to distinguish between true and false associations in the diversity panel

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Aligned SNP Data for CDBN Genomics in Hapmap and Numeric Format

    No full text
    This dataset contains SNP data for replication of the genome-wide association results in the paper “Genetic Associations in Four Decades of Multi-Environment Trials Reveal Agronomic Trait Evolution in Common Bean”. It contains SNP data for 348 genotypes of common bean (Phaseolus vulgaris), grown as part of the Cooperative Dry Bean Nursery. It contains this data in both hapmap and numeric format. To create the hapmap data, aligned SNP data was created from raw sequence data using the pipeline at https://github.com/Alice-MacQueen/SNP-calling-pipeline-GBS-ApeKI . It was then imputed using FILLIN and filtered to contain only SNPs with a minor allele frequency of 5% or higher, and with missing data of 120 individuals or fewer. The hapmap file was used to create single chromosome files in numerical format, which GAPIT accepts, using GAPIT

    Supplementary Data: Figures, Tables, and Note

    No full text
    The Supplementary Data for the manuscript entitled , “Genetic Associations in Four Decades of Multi-Environment Trials Reveal Agronomic Trait Evolution in Common Bean”. This data includes a word document containing captions for all figures and tables, as well as two supplementary tables, four supplementary figures, and a supplementary note. It also contains three Excel documents containing three additional supplementary tables

    GENETICS OF YIELD VARIATION AND GENOTYPE BY ENVIRONMENT INTERACTIONS IN THE COOPERATIVE DRY BEAN NURSERIES

    Get PDF
    Common bean (Phaseolus vulgaris) yields have improved in multiple long-term breeding efforts across the world. An important long-term trial that supports these breeding efforts is the Cooperative Dry Bean Nursery (CDBN), an ongoing 60+ year collaboration across the United States and Canada. However, large genotype-by-environment interactions (GxE) persist in common bean (Figure 1). Though genomics assisted breeding tools and analyses to study GxE are rapidly improving (Heffner et al., 2009; Perez & de los Campos 2014), accurate phenotyping in relevant field conditions remains a major limitation of these analyses. Major phenotyping efforts such as the CDBN, when combined with genomic data, offer unparalleled opportunities to determine how major genetic factors affect genotype by environment interactions. To characterize the genetics of phenotypic variation in common bean, phenotypes and fitness in a wide range of environments must be connected to the alleles that influence them. In collaboration with current common bean sequencing efforts, we are sequencing 320 varieties and breeding lines from the CDBN to establish a genome-wide association (GWA) mapping population. We will use this panel to determine the genomic regions associated with phenology, yield, and other traits phenotyped by the CDBN. We will also use weather data associated with each location and year to determine the genetics of, and the abiotic factors leading to, GxE interactions between these phenotypes and climate

    Genetic Associations in Four Decades of Multienvironment Trials Reveal Agronomic Trait Evolution in Common Bean

    Get PDF
    Multienvironment trials (METs) are widely used to assess the performance of promising crop germplasm. Though seldom designed to elucidate genetic mechanisms, MET data sets are often much larger than could be duplicated for genetic research and, given proper interpretation, may offer valuable insights into the genetics of adaptation across time and space. The Cooperative Dry Bean Nursery (CDBN) is a MET for common bean (Phaseolus vulgaris) grown for . 70 years in the United States and Canada, consisting of 20–50 entries each year at 10–20 locations. The CDBN provides a rich source of phenotypic data across entries, years, and locations that is amenable to genetic analysis. To study stable genetic effects segregating in this MET, we conducted genome-wide association studies (GWAS) using best linear unbiased predictions derived across years and locations for 21 CDBN phenotypes and genotypic data (1.2 million SNPs) for 327 CDBN genotypes. The value of this approach was confirmed by the discovery of three candidate genes and genomic regions previously identified in balanced GWAS. Multivariate adaptive shrinkage (mash) analysis, which increased our power to detect significant correlated effects, found significant effects for all phenotypes. Mash found two large genomic regions with effects on multiple phenotypes, supporting a hypothesis of pleiotropic or linked effects that were likely selected on in pursuit of a crop ideotype. Overall, our results demonstrate that statistical genomics approaches can be used on MET phenotypic data to discover significant genetic effects and to define genomic regions associated with crop improvement

    Modulation of R

    No full text
    • …
    corecore