201 research outputs found

    Usability of a barcode scanning system as a means of data entry on a PDA for self-report health outcome questionnaires: a pilot study in individuals over 60 years of age

    Get PDF
    BACKGROUND: Throughout the medical and paramedical professions, self-report health status questionnaires are used to gather patient-reported outcome measures. The objective of this pilot study was to evaluate in individuals over 60 years of age the usability of a PDA-based barcode scanning system with a text-to-speech synthesizer to collect data electronically from self-report health outcome questionnaires. METHODS: Usability of the system was tested on a sample of 24 community-living older adults (7 men, 17 women) ranging in age from 63 to 93 years. After receiving a brief demonstration on the use of the barcode scanner, participants were randomly assigned to complete two sets of 16 questions using the bar code wand scanner for one set and a pen for the other. Usability was assessed using directed interviews with a usability questionnaire and performance-based metrics (task times, errors, sources of errors). RESULTS: Overall, participants found barcode scanning easy to learn, easy to use, and pleasant. Participants were marginally faster in completing the 16 survey questions when using pen entry (20/24 participants). The mean response time with the barcode scanner was 31 seconds longer than traditional pen entry for a subset of 16 questions (p = 0.001). The responsiveness of the scanning system, expressed as first scan success rate, was less than perfect, with approximately one-third of first scans requiring a rescan to successfully capture the data entry. The responsiveness of the system can be explained by a combination of factors such as the location of the scanning errors, the type of barcode used as an answer field in the paper version, and the optical characteristics of the barcode scanner. CONCLUSION: The results presented in this study offer insights regarding the feasibility, usability and effectiveness of using a barcode scanner with older adults as an electronic data entry method on a PDA. While participants in this study found their experience with the barcode scanning system enjoyable and learned to become proficient in its use, the responsiveness of the system constitutes a barrier to wide-scale use of such a system. Optimizing the graphical presentation of the information on paper should significantly increase the system's responsiveness

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Targeted kinase inhibition relieves slowness and tremor in a Drosophila model of LRRK2 Parkinson’s disease

    Get PDF
    Disease models: A reflex reaction A simple reflex in flies can be used to test the effectiveness of therapies that slow neurodegeneration in Parkinson’s disease (PD). Christopher Elliott and colleagues at the University of York in the United Kingdom investigated the contraction of the proboscis muscle which mediates a taste behavior response and is regulated by a single dopaminergic neuron. Flies bearing particular mutations in the PD-associated gene leucine-rich repeat kinase 2 (LRRK2) in dopaminergic neurons lost their ability to feed on a sweet solution. This was due to the movement of the proboscis muscle becoming slower and stiffer, hallmark features of PD. The authors rescued the impaired reflex reaction by feeding the flies l-DOPA or LRRK2 inhibitors. These findings highlight the proboscis extension response as a useful tool to identify other PD-associated mutations and test potential therapeutic compounds

    Predicting risk for Alcohol Use Disorder using longitudinal data with multimodal biomarkers and family history: a machine learning study.

    Get PDF
    Predictive models have succeeded in distinguishing between individuals with Alcohol use Disorder (AUD) and controls. However, predictive models identifying who is prone to develop AUD and the biomarkers indicating a predisposition to AUD are still unclear. Our sample (n = 656) included offspring and non-offspring of European American (EA) and African American (AA) ancestry from the Collaborative Study of the Genetics of Alcoholism (COGA) who were recruited as early as age 12 and were unaffected at first assessment and reassessed years later as AUD (DSM-5) (n = 328) or unaffected (n = 328). Machine learning analysis was performed for 220 EEG measures, 149 alcohol-related single nucleotide polymorphisms (SNPs) from a recent large Genome-wide Association Study (GWAS) of alcohol use/misuse and two family history (mother DSM-5 AUD and father DSM-5 AUD) features using supervised, Linear Support Vector Machine (SVM) classifier to test which features assessed before developing AUD predict those who go on to develop AUD. Age, gender, and ancestry stratified analyses were performed. Results indicate significant and higher accuracy rates for the AA compared with the EA prediction models and a higher model accuracy trend among females compared with males for both ancestries. Combined EEG and SNP features model outperformed models based on only EEG features or only SNP features for both EA and AA samples. This multidimensional superiority was confirmed in a follow-up analysis in the AA age groups (12-15, 16-19, 20-30) and EA age group (16-19). In both ancestry samples, the youngest age group achieved higher accuracy score than the two other older age groups. Maternal AUD increased the model's accuracy in both ancestries' samples. Several discriminative EEG measures and SNPs features were identified, including lower posterior gamma, higher slow wave connectivity (delta, theta, alpha), higher frontal gamma ratio, higher beta correlation in the parietal area, and 5 SNPs: rs4780836, rs2605140, rs11690265, rs692854, and rs13380649. Results highlight the significance of sampling uniformity followed by stratified (e.g., ancestry, gender, developmental period) analysis, and wider selection of features, to generate better prediction scores allowing a more accurate estimation of AUD development

    Stand Out in Class: restructuring theclassroom environment to reducesedentary behaviour in 9–10-year-olds—study protocol for a pilot clusterrandomised controlled trial

    Get PDF
    Background: Sedentary behaviour (sitting) is a highly prevalent negative health behaviour, with individuals of allages exposed to environments that promote prolonged sitting. Excessive sedentary behaviour adversely affects health inchildren and adults. As sedentary behaviour tracks from childhood into adulthood, the reduction of sedentary time inyoung people is key for the prevention of chronic diseases that result from excessive sitting in later life. The sedentaryschool classroom represents an ideal setting for environmentalchange, through the provision of sit-stand desks. Whilstthe use of sit-stand desks in classrooms demonstrates positiveeffects in some key outcomes, evidence is currently limitedby small samples and/or short intervention durations, withfewstudiesadoptingrandomisedcontrolledtrial(RCT)designs. This paper describes the protocol of a pilot cluster RCT of a sit-stand desk interventioninprimaryschoolclassrooms.Methods/Design:A two-arm pilot cluster RCT will be conducted in eight primary schools (four intervention, four control)with at least 120 year 5 children (aged 9–10 years). Sit-stand desks will replace six standard desks in the interventionclassrooms. Teachers will be encouraged to ensure all pupils are exposed to the sit-stand desks for at least 1 h/dayon average using a rotation system. Schools assigned to the control arm will continue with their usual practice, noenvironmental changes will be made to their classrooms. Measurements will be taken at baseline, beforerandomisation, and at the end of the schools’academic year. In this study, the primary outcomes of interest will beschool and participant recruitment and attrition, acceptability of the intervention, and acceptability and complianceto the proposed outcome measures (including activPAL-measured school-time and school-day sitting, accelerometer-measured physical activity, adiposity, blood pressure, cognitive function, academic progress, engagement, andbehaviour) for inclusion in a definitive trial. A full process evaluation and an exploratory economic evaluation willalso be conducted to further inform a definitive tria

    Primary Role of Functional Ischemia, Quantitative Evidence for the Two-Hit Mechanism, and Phosphodiesterase-5 Inhibitor Therapy in Mouse Muscular Dystrophy

    Get PDF
    Background. Duchenne Muscular Dystrophy (DMD) is characterized by increased muscle damage and an abnormal blood flow after muscle contraction: the state of functional ischemia. Until now, however, the cause-effect relationship between the pathogenesis of DMD and functional ischemia was unclear. We examined (i) whether functional ischemia is necessary to cause contraction-induced myofiber damage and (ii) whether functional ischemia alone is sufficient to induce the damage. Methodology/Principal Findings. In vivo microscopy was used to document assays developed to measure intramuscular red blood cell flux, to quantify the amount of vasodilatory molecules produced from myofibers, and to determine the extent of myofiber damage. Reversal of functional ischemia via pharmacological manipulation prevented contraction-induced myofiber damage in mdx mice, the murine equivalent of DMD. This result indicates that functional ischemia is required for, and thus an essential cause of, muscle damage in mdx mice. Next, to determine whether functional ischemia alone is enough to explain the disease, the extent of ischemia and the amount of myofiber damage were compared both in control and mdx mice. In control mice, functional ischemia alone was found insufficient to cause a similar degree of myofiber damage observed in mdx mice. Additional mechanisms are likely contributing to cause more severe myofiber damage in mdx mice, suggestive of the existence of a ‘‘two-hit’ ’ mechanism in the pathogenesis of this disease. Conclusions/Significance. Evidence was provided supporting the essential role of functional ischemia in contraction-induced myofiber damage in mdx mice. Furthermore, the first quantitative evidence for the ‘‘two-hit’ ’ mechanism in this disease was documented. Significantly, the vasoactive dru

    Flanker performance in female college students with ADHD: a diffusion model analysis

    Get PDF
    Attention-deficit hyperactivity disorder (ADHD) is characterized by poor adaptation to environmental demands, which leads to various everyday life problems. The present study had four aims: (1) to compare performance in a flanker task in female college students with and without ADHD (N = 39) in a classical analyses of reaction time and error rate and studying the underlying processes using a diffusion model, (2) to compare the amount of focused attention, (3) to explore the adaptation of focused attention, and (4) to relate adaptation to psychological functioning. The study followed a 2-between (group: ADHD vs. control) × 2-within (flanker conflict: incongruent vs. congruent) × 2-within (conflict frequency: 20 vs. 80 %) design. Compared to a control group, the ADHD group displayed prolonged response times accompanied by fewer errors in a flanker task. Results from the diffusion model analyses revealed that the members of the ADHD group showed deficits in non-decisional processes (i.e., higher non-decision time) and leaned more toward accuracy than participants without ADHD (i.e., setting higher boundaries). The ADHD group showed a more focused attention and less adaptation to the task conditions which is related to psychological functioning. Deficient non-decisional processes and poor adaptation are in line with theories of ADHD and presumably typical for the ADHD population, although this has not been shown using a diffusion model. However, we assume that the cautious strategy of trading speed of for accuracy is specific to the subgroup of female college students with ADHD and might be interpreted as a compensation mechanism
    corecore