27 research outputs found
A Central Partition of Molecular Conformational Space.III. Combinatorial Determination of the Volume Spanned by a Molecular System
In the first work of this series [physics/0204035] it was shown that the
conformational space of a molecule could be described to a fair degree of
accuracy by means of a central hyperplane arrangement. The hyperplanes divide
the espace into a hierarchical set of cells that can be encoded by the face
lattice poset of the arrangement. The model however, lacked explicit rotational
symmetry which made impossible to distinguish rotated structures in
conformational space. This problem was solved in a second work
[physics/0404052] by sorting the elementary 3D components of the molecular
system into a set of morphological classes that can be properly oriented in a
standard 3D reference frame. This also made possible to find a solution to the
problem that is being adressed in the present work: for a molecular system
immersed in a heat bath we want to enumerate the subset of cells in
conformational space that are visited by the molecule in its thermal wandering.
If each visited cell is a vertex on a graph with edges to the adjacent cells,
here it is explained how such graph can be built
Recommended from our members
Progress toward chemcial accuracy in the computer simulation of condensed phase reactions
A procedure is described for the generation of chemically accurate computer-simulation models to study chemical reactions in the condensed phase. The process involves (1) the use of a coupled semiempirical quantum and classical molecular mechanics method to represent solutes and solvent, respectively; (2) the optimization of semiempirical quantum mechanics (QM) parameters to produce a computationally efficient and chemically accurate QM model; (3) the calibration of a quantum/classical microsolvation model using ab initio quantum theory; and (4) the use of statistical mechanical principles and methods to simulate, on massively parallel computers, the thermodynamic properties of chemical reactions in aqueous solution. The utility of this process is demonstrated by the calculation of the enthalpy of reaction in vacuum and free energy change in aqueous solution for a proton transfer involving methanol, methoxide, imidazole, and imidazolium, which are functional groups involved with proton transfers in many biochemical systems. An optimized semiempirical QM model is produced, which results in the calculation of heats of formation of the above chemical species to within 1.0 kcal/mol of experimental values. The use of the calibrated QM and microsolvation QM/MM models for the simulation of a proton transfer in aqueous solution gives a calculated free energy that is within 1.0 kcal/mol (12.2 calculated vs. 12.8 experimental) of a value estimated from experimental pKa`s of the reacting species
A Central Partition of Molecular Conformational Space. IV. Extracting information from the graph of cells
In previous works [physics/0204035, physics/0404052, physics/0509126] a
procedure was described for dividing the -dimensional
conformational space of a molecular system into a number of discrete cells,
this partition allowed the building of a combinatorial structure from data
sampled in molecular dynamics trajectories: the graph of cells, that encodes
the set of cells in conformational space that are visited by the system in its
thermal wandering. Here we outline a set of procedures for extracting useful
information from this structure: 1st) interesting regions in the volume
occupied by the system in conformational space can be bounded by a polyhedral
cone whose faces are determined empirically from a set of relations between the
coordinates of the molecule, 2nd) it is also shown that this cone can be
decomposed into a hierarchical set of smaller cones, 3rd) the set of cells in a
cone can be encoded by a simple combinatorial sequence.Comment: added an intrduction and reference
Molecular dynamics study of accelerated ion-induced shock waves in biological media
We present a molecular dynamics study of the effects of carbon- and iron-ion induced shock waves in DNA duplexes in liquid water. We use the CHARMM force field implemented within the MBN Explorer simulation package to optimize and equilibrate DNA duplexes in liquid water boxes of different sizes and shapes. The translational and vibrational degrees of freedom of water molecules are excited according to the energy deposited by the ions and the subsequent shock waves in liquid water are simulated. The pressure waves generated are studied and compared with an analytical hydrodynamics model which serves as a benchmark for evaluating the suitability of the simulation boxes. The energy deposition in the DNA backbone bonds is also monitored as an estimation of biological damage, something which is not possible with the analytical model
Molecular Dynamics Study of Gating in the Mechanosensitive Channel of Small Conductance MscS
Mechanosensitive channels are a class of ubiquitous membrane proteins gated by mechanical strain in the cellular membrane. MscS, the mechanosensitive channel of small conductance, is found in the inner membrane of Escherichia coli and its crystallographic structure in an open form has been recently solved. By means of molecular dynamics simulations we studied the stability of the channel conformation suggested by crystallography in a fully solvated lipid (POPC) bilayer, the combined system encompassing 224,340 atoms. When restraining the backbone of the protein, the channel remained in the open form and the simulation revealed intermittent permeation of water molecules through the channel. Abolishing the restraints under constant pressure conditions led to spontaneous closure of the transmembrane channel, whereas abolishing the restraints when surface tension (20 dyn/cm) was applied led to channel widening. The large balloon-shaped cytoplasmic domain of MscS exhibited spontaneous diffusion of ions through its side openings. Interaction between the transmembrane domain and the cytoplasmic domain of MscS was observed and involved formation of salt bridges between residues Asp(62) and Arg(128); this interaction may be essential for the gating of MscS. K(+) and Cl(−) ions showed distinctively different distributions in and around the channel
On binding specificity of (6–4) photolyase to a T(6–4)T DNA photoproduct
Different factors lead to DNA damage and if it is not repaired in due time, the damaged DNA could initiate mutagenesis and cancer. To avoid this deadly scenario, specific enzymes can scavenge and repair the DNA, but the enzymes have to bind first to the damaged sites. We have investigated this binding for a specific enzyme called (6–4) photolyase, which is capable of repairing certain UV-induced damage in DNA. Through molecular dynamics simulations we describe the binding between photolyase and the DNA and reveal that several charged amino acid residues in the enzyme, such as arginines and lysines turn out to be important. Especially R421 is crucial, as it keeps the DNA strands at the damaged site inside the repair pocket of the enzyme separated. DNA photolyase is structurally highly homologous to a protein called cryptochrome. Both proteins are biologically activated similarly, namely through flavin co-factor photoexcitation. It is, however, striking that cryptochrome cannot repair UV-damaged DNA. The present investigation allowed us to conclude on the small but, apparently, critical differences between photolyase and cryptochrome. The performed analysis gives insight into important factors that govern the binding of UV-damaged DNA and reveal why cryptochrome cannot have this functionality