281 research outputs found

    A Numerical Investigation of the Effects of Classical Phase Space Structure on a Quantum System

    Full text link
    We present a detailed numerical study of a chaotic classical system and its quantum counterpart. The system is a special case of a kicked rotor and for certain parameter values possesses cantori dividing chaotic regions of the classical phase space. We investigate the diffusion of particles through a cantorus; classical diffusion is observed but quantum diffusion is only significant when the classical phase space area escaping through the cantorus per kicking period greatly exceeds Planck's constant. A quantum analysis confirms that the cantori act as barriers. We numerically estimate the classical phase space flux through the cantorus per kick and relate this quantity to the behaviour of the quantum system. We introduce decoherence via environmental interactions with the quantum system and observe the subsequent increase in the transport of quantum particles through the boundary.Comment: 15 pages, 22 figure

    Crises and collective socio-economic phenomena: simple models and challenges

    Full text link
    Financial and economic history is strewn with bubbles and crashes, booms and busts, crises and upheavals of all sorts. Understanding the origin of these events is arguably one of the most important problems in economic theory. In this paper, we review recent efforts to include heterogeneities and interactions in models of decision. We argue that the Random Field Ising model (RFIM) indeed provides a unifying framework to account for many collective socio-economic phenomena that lead to sudden ruptures and crises. We discuss different models that can capture potentially destabilising self-referential feedback loops, induced either by herding, i.e. reference to peers, or trending, i.e. reference to the past, and account for some of the phenomenology missing in the standard models. We discuss some empirically testable predictions of these models, for example robust signatures of RFIM-like herding effects, or the logarithmic decay of spatial correlations of voting patterns. One of the most striking result, inspired by statistical physics methods, is that Adam Smith's invisible hand can badly fail at solving simple coordination problems. We also insist on the issue of time-scales, that can be extremely long in some cases, and prevent socially optimal equilibria to be reached. As a theoretical challenge, the study of so-called "detailed-balance" violating decision rules is needed to decide whether conclusions based on current models (that all assume detailed-balance) are indeed robust and generic.Comment: Review paper accepted for a special issue of J Stat Phys; several minor improvements along reviewers' comment

    The Origin, Early Evolution and Predictability of Solar Eruptions

    Get PDF
    Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt

    Predictive runtime code scheduling for heterogeneous architectures

    Get PDF
    Heterogeneous architectures are currently widespread. With the advent of easy-to-program general purpose GPUs, virtually every re- cent desktop computer is a heterogeneous system. Combining the CPU and the GPU brings great amounts of processing power. However, such architectures are often used in a restricted way for domain-speci c appli- cations like scienti c applications and games, and they tend to be used by a single application at a time. We envision future heterogeneous com- puting systems where all their heterogeneous resources are continuously utilized by di erent applications with versioned critical parts to be able to better adapt their behavior and improve execution time, power con- sumption, response time and other constraints at runtime. Under such a model, adaptive scheduling becomes a critical component. In this paper, we propose a novel predictive user-level scheduler based on past performance history for heterogeneous systems. We developed sev- eral scheduling policies and present the study of their impact on system performance. We demonstrate that such scheduler allows multiple appli- cations to fully utilize all available processing resources in CPU/GPU- like systems and consistently achieve speedups ranging from 30% to 40% compared to just using the GPU in a single application mode.Postprint (published version

    Measurement of the CP-Violating Asymmetry Amplitude sin2β\beta

    Get PDF
    We present results on time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurements use a data sample of about 88 million Y(4S) --> B Bbar decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We study events in which one neutral B meson is fully reconstructed in a final state containing a charmonium meson and the other B meson is determined to be either a B0 or B0bar from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay-time distributions in such events. We measure sin2beta = 0.741 +/- 0.067 (stat) +/- 0.033 (syst) and |lambda| = 0.948 +/- 0.051 (stat) +/- 0.017 (syst). The magnitude of lambda is consistent with unity, in agreement with the Standard Model expectation of no direct CP violation in these modes

    Coronal Magnetic Field Evolution from 1996 to 2012: Continuous Non-potential Simulations

    Get PDF
    Coupled flux transport and magneto-frictional simulations are extended to simulate the continuous magnetic-field evolution in the global solar corona for over 15 years, from the start of Solar Cycle 23 in 1996. By simplifying the dynamics, our model follows the build-up and transport of electric currents and free magnetic energy in the corona, offering an insight into the magnetic structure and topology that extrapolation-based models cannot. To enable these extended simulations, we have implemented a more efficient numerical grid, and have carefully calibrated the surface flux-transport model to reproduce the observed large-scale photospheric radial magnetic field, using emerging active regions determined from observed line-of-sight magnetograms. This calibration is described in some detail. In agreement with previous authors, we find that the standard flux-transport model is insufficient to simultaneously reproduce the observed polar fields and butterfly diagram during Cycle 23, and that additional effects must be added. For the best-fit model, we use automated techniques to detect the latitude–time profile of flux ropes and their ejections over the full solar cycle. Overall, flux ropes are more prevalent outside of active latitudes but those at active latitudes are more frequently ejected. Future possibilities for space-weather prediction with this approach are briefly assessed

    Microstructural and Chemical Rejuvenation of a Ni-Based Superalloy

    Get PDF
    This is an open access article published by Springer and distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), http://creativecommons.org/licenses/by/4.0/The microstructural evolution of the Ni-based superalloy CMSX-4 including the change in gamma prime morphology, size and distribution after high temperature degradation and subsequent rejuvenation heat treatments has been examined using field emission gun scanning electron microscopy (FEGSEM) and transmission electron microscopy (TEM). In this paper it is shown that there are significant differences in the size of the ‘channels’ between gamma prime particles, the degree of rafting and the size of tertiary gamma prime particles in each of the different microstructural conditions studied. Chemical analysis has been carried out to compare rejuvenated and pre-service samples after the same subsequent degradation procedure. The results indicate that although the microstructure of pre-service and rejuvenated samples are similar, chemical differences are more pronounced in the rejuvenated samples, suggesting that chemical segregation from partitioning of the elements was not completely eliminated through the applied rejuvenation heat treatment. A number of modified rejuvenation heat treatment trials were carried out to reduce the chemical segregation prior to creep testing. The creep test results suggest that chemical segregation has an immeasurable influence on the short-term mechanical properties under the test conditions used here, indicating that further work is required to fully understand the suitability of specific rejuvenation heat treatments and their role in the extension of component life in power plant applications

    Mental health training for community maternity workers in Nepal

    Get PDF
    Background: Mental health is a difficult topic to discuss in Nepal. This makes it hard for front-line maternity-care providers to start a discussion about mental health issues with women. As Nepal has not yet recognised midwifery as a profession, this UK-funded programme (THET) aims to train community health workers i.e. Auxiliary Nurse Midwives (ANMs) on mental health issues related to pregnancy. Purpose/Objective: This needs assessment, of all ANMs working in one district, assesses knowledge of perinatal mental health issues and future training needs. Method: This quantitative study used a structure questionnaire in Nepali at the start of the training of ANMs. The questions covered knowledge, views on mental health and illness and previous training on the topic. Ethical approval was granted by the Nepal Health Research Council (NHRC). Key Findings: In total 74 questionnaires were returned (out of 76). With 97% of ANMSs reporting they never had specific training issues around perinatal mental health. Their knowledge on perinatal mental health is poor, half of them are not aware that pregnancy and childbirth can cause mental illness. People do not talk openly about mental health problem in their local community. Most ANM thought specialised training on perinatal mental health would be useful. Discussion: Mental health in pregnancy/childbirth is often ignored especially in low-income countries like Nepal. In a country without recognised midwives there is a great need to improve attitudes and skills among community-based maternity workers who lacking training on maternity-related mental health issues. There is a great need for a national curriculum to facilitate relevant training
    corecore