263 research outputs found
Engineering a BCR-ABL-activated caspase for the selective elimination of leukemic cells.
Increased understanding of the precise molecular mechanisms involved in cell survival and cell death signaling pathways offers the promise of harnessing these molecules to eliminate cancer cells without damaging normal cells. Tyrosine kinase oncoproteins promote the genesis of leukemias through both increased cell proliferation and inhibition of apoptotic cell death. Although tyrosine kinase inhibitors, such as the BCR-ABL inhibitor imatinib, have demonstrated remarkable efficacy in the clinic, drug-resistant leukemias emerge in some patients because of either the acquisition of point mutations or amplification of the tyrosine kinase, resulting in a poor long-term prognosis. Here, we exploit the molecular mechanisms of caspase activation and tyrosine kinase/adaptor protein signaling to forge a unique approach for selectively killing leukemic cells through the forcible induction of apoptosis. We have engineered caspase variants that can directly be activated in response to BCR-ABL. Because we harness, rather than inhibit, the activity of leukemogenic kinases to kill transformed cells, this approach selectively eliminates leukemic cells regardless of drug-resistant mutations
Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells
The anti-diabetic drug metformin regulates T-cell responses to immune activation and is proposed to function by regulating the energy-stress-sensing adenosine-monophosphate-activated protein kinase (AMPK). However, the molecular details of how metformin controls T cell immune responses have not been studied nor is there any direct evidence that metformin acts on T cells via AMPK. Here, we report that metformin regulates cell growth and proliferation of antigen-activated T cells by modulating the metabolic reprogramming that is required for effector T cell differentiation. Metformin thus inhibits the mammalian target of rapamycin complex I signalling pathway and prevents the expression of the transcription factors c-Myc and hypoxia-inducible factor 1 alpha. However, the inhibitory effects of metformin on T cells did not depend on the expression of AMPK in T cells. Accordingly, experiments with metformin inform about the importance of metabolic reprogramming for T cell immune responses but do not inform about the importance of AMPK
Effect of a weight loss intervention on anthropometric measures and metabolic risk factors in pre- versus postmenopausal women
<p>Abstract</p> <p>Background</p> <p>The present study examines changes in body weight, fat mass, metabolic and hormonal parameters in overweight and obese pre- and postmenopausal women who participated in a weight loss intervention.</p> <p>Methods</p> <p>Seventy-two subjects were included in the analysis of this single arm study (premenopausal: 22 women, age 43.7 ± 6.4 years, BMI 31.0 ± 2.4 kg/m<sup>2</sup>; postmenopausal: 50 women, age 58.2 ± 5.1 years, BMI 32.9 ± 3.7 kg/m<sup>2</sup>). Weight reduction was achieved by the use of a meal replacement and fat-reduced diet. In addition, from week 6 to 24 participants attended a guided exercise program. Body composition was analyzed with the Bod Pod<sup>®</sup>. Blood pressures were taken at every visit and blood was collected at baseline and closeout of the study to evaluate lipids, insulin, cortisol and leptin levels.</p> <p>Results</p> <p>BMI, fat mass, waist circumference, systolic blood pressure, triglycerides, glucose, leptin and cortisol were higher in the postmenopausal women at baseline.</p> <p>Both groups achieved a substantial and comparable weight loss (pre- vs. postmenopausal: 6.7 ± 4.9 vs 6.7 ± 4.4 kg; n.s.). However, in contrast to premenopausal women, weight loss in postmenopausal women was exclusively due to a reduction of fat mass (-5.3 ± 5.1 vs -6.6 ± 4.1 kg; p < 0.01). In premenopausal women 21% of weight loss was attributed to a reduction in lean body mass.</p> <p>Blood pressure, triglycerides, HDL-cholesterol, and glucose improved significantly only in postmenopausal women whereas total cholesterol and LDL-cholesterol were lowered significantly in both groups.</p> <p>Conclusion</p> <p>Both groups showed comparable weight loss and in postmenopausal women weight loss was associated with a pronounced improvement in metabolic risk factors thereby reducing the prevalence of metabolic syndrome.</p
Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis.
Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed
The cytotoxic T cell proteome and its shaping by the kinase mTOR
High-resolution mass spectrometry maps the cytotoxic T lymphocyte (CTL) proteome and the impact of mammalian target of rapamycin complex 1 (mTORC1) on CTLs. The CTL proteome was dominated by metabolic regulators and granzymes and mTORC1 selectively repressed and promoted expression of subset of CTL proteins (~10%). These included key CTL effector molecules, signaling proteins and a subset of metabolic enzymes. Proteomic data highlighted the potential for mTORC1 negative control of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) production in CTL. mTORC1 was shown to repress PtdIns(3,4,5)P(3) production and to determine the mTORC2 requirement for activation of the kinase Akt. Unbiased proteomic analysis thus provides a comprehensive understanding of CTL identity and mTORC1 control of CTL function
Pulmonary Function and Incident Bronchitis and Asthma in Children: A Community-Based Prospective Cohort Study
BACKGROUND: Previous studies revealed that reduction of airway caliber in infancy might increase the risks for wheezing and asthma. However, the evidence for the predictive effects of pulmonary function on respiratory health in children was still inconsistent. METHODS: We conducted a population-based prospective cohort study among children in 14 Taiwanese communities. There were 3,160 children completed pulmonary function tests in 2007 and follow-up questionnaire in 2009. Poisson regression models were performed to estimate the effect of pulmonary function on the development of bronchitis and asthma. RESULTS: After adjustment for potential confounders, pulmonary function indices consistently showed protective effects on respiratory diseases in children. The incidence rate ratios of bronchitis and asthma were 0.86 (95% CI 0.79-0.95) and 0.91 (95% CI 0.82-0.99) for forced expiratory volume in 1 second (FEV₁). Similar adverse effects of maximal mid-expiratory flow (MMEF) were also observed on bronchitis (RR = 0.73, 95% CI 0.67-0.81) and asthma (RR = 0.85, 95% CI 0.77-0.93). We found significant decreasing trends in categorized FEV₁ (p for trend = 0.02) and categories of MMEF (p for trend = 0.01) for incident bronchitis. Significant modification effects of traffic-related air pollution were noted for FEV₁ and MMEF on bronchitis and also for MMEF on asthma. CONCLUSIONS: Children with high pulmonary function would have lower risks on the development of bronchitis and asthma. The protective effect of high pulmonary function would be modified by traffic-related air pollution exposure
Income Attainment among Victims of Violence: Results From a Preliminary Study
Violent victimisation may have many short-term psychological and physical outcomes. Occasionally, the negative aftermath of violence persists over time or induces other and more far-reaching consequences. Income attainment after victimisation is one of these outcomes. To date, previous studies have focussed on the income effects of violent victimisation during childhood and adolescence. Violence exposure during the early stages of the life course may frustrate processes of educational and occupational attainment and consequentially result in lower income levels. However, in addition or alternatively, many other and age-independent pathways between violent victimisation and income may be suggested. Prior studies appear to have paid little attention to this issue. Therefore, the purpose of the current study was to explore whether violent victimisation is associated with income levels several years after victimisation, irrespective of the age at which victimisation occurs. Victims of violence were recruited through the Dutch Victim Compensation Fund. To preliminary estimate the effect of violent victimisation on income, a comparable control group of non-victims was composed. The study sample contained 206 victims and 173 non-victims. Both bivariate correlational and multivariate statistical techniques suggested that violent victimisation is a significant predictor of income. Implications of the presented results were discussed with regard to future research and policy practice
Socio-demographic disparity in oral health among the poor: a cross sectional study of early adolescents in Kilwa district, Tanzania
There is a lack of studies considering social disparity in oral health emanating from adolescents in low-income countries. This study aimed to assess socio-demographic disparities in clinical- and self reported oral health status and a number of oral health behaviors. The extent to which oral health related behaviors might account for socio-demographic disparities in oral health status was also examined. A cross-sectional study was conducted in Kilwa district in 2008. One thousand seven hundred and forty five schoolchildren completed an interview and a full mouth clinical examination. Caries experience was recorded using WHO criteria, whilst type of treatment need was categorized using the ART approach. The majority of students were caries free (79.8%) and presented with a low need for dental treatment (89.3%). Compared to their counterparts in opposite groups, rural residents and those from less poor households presented more frequently with caries experience (DMT>0), high need for dental treatment and poor oral hygiene behavior, but were less likely to report poor oral health status. Stepwise logistic regressions revealed that social and behavioral variables varied systematically with caries experience, high need for dental treatment and poor self reported oral health. Socio-demographic disparities in oral health outcomes persisted after adjusting for oral health behaviors. Socio-demographic disparities in oral health outcomes and oral health behaviors do exist. Socio-demographic disparities in oral health outcomes were marginally accounted for by oral health behaviors. Developing policies and programs targeting both social and individual determinants of oral health should be an urgent public health strategy in Tanzania
Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy
Sustained glucose and glutamine transport are essential for activated T lymphocytes to support ATP and macromolecule biosynthesis. We now show that glutamine and glucose also fuel an indispensible dynamic regulation of intracellular protein O-GlcNAcylation at key stages of T cell development, transformation and differentiation. Glucose and glutamine are precursors of UDP-GlcNAc, a substrate for cellular glycosyltransferases. Immune activated T cells contained higher concentrations of UDP-GlcNAc and increased intracellular protein O-GlcNAcylation controlled by the enzyme O-GlcNAc glycosyltransferase as compared to naïve cells. We identified Notch, the T cell antigen receptor and c-Myc as key controllers of T cell protein O-GlcNAcylation, via regulation of glucose and glutamine transport. Loss of O-GlcNAc transferase blocked T cell progenitor renewal, malignant transformation, and peripheral T cell clonal expansion. Nutrient-dependent signaling pathways regulated by O-GlcNAc glycosyltransferase are thus fundamental for T cell biology
- …