2,754 research outputs found

    Non-linear Preheating with Scalar Metric Perturbations

    Full text link
    We have studied preheating of field perturbations in a 3-dimensional lattice including the effect of scalar metric perturbations, in two generic models of inflation: chaotic inflation with a quartic potential, and standard hybrid inflation. We have prepared the initial state for the classical evolution of the system with vanishing vector and tensor metric perturbations, consistent with the constraint equations, the energy and momentum constraints. The non-linear evolution inevitably generates vector and tensor modes, and this reflects on how well the constraint equations are fulfilled during the evolution. The induced preheating of the scalar metric perturbations is not large enough to backreact onto the fields, but it could affect the evolution of vector and tensor modes. This is the case in hybrid inflation for some values of the coupling gg and the height of potential V01/4V_0^{1/4}. For example with V01/4≃1015V_0^{1/4} \simeq 10^{15} GeV, preheating of scalar perturbations is such that their source term in the evolution equation of tensor and vector becomes comparable to that of the field anisotropic stress.Comment: 15 pages, 12 eps figure

    Treadmill exercise within lower body negative pressure protects leg lean tissue mass and extensor strength and endurance during bed rest.

    Get PDF
    Leg muscle mass and strength are decreased during reduced activity and non-weight-bearing conditions such as bed rest (BR) and spaceflight. Supine treadmill exercise within lower body negative pressure (LBNPEX) provides full-body weight loading during BR and may prevent muscle deconditioning. We hypothesized that a 40-min interval exercise protocol performed against LBNPEX 6 days week(-1) would attenuate losses in leg lean mass (LLM), strength, and endurance during 6° head-down tilt BR, with similar benefits for men and women. Fifteen pairs of healthy monozygous twins (8 male and 7 female pairs) completed 30 days of BR with one sibling of each twin pair assigned randomly as the non-exercise control (CON) and the other twin as the exercise subject (EX). Before and after BR, LLM and isokinetic leg strength and endurance were measured. Mean knee and ankle extensor and flexor strength and endurance and LLM decreased from pre- to post-BR in the male CON subjects (P < 0.01), but knee extensor strength and endurance, ankle extensor strength, and LLM were maintained in the male EX subjects. In contrast, no pre- to post-BR changes were significant in the female subjects, either CON or EX, likely due to their lower pre-BR values. Importantly, the LBNPEX countermeasure prevents or attenuates declines in LLM as well as extensor leg strength and endurance. Individuals who are stronger, have higher levels of muscular endurance, and/or have greater LLM are likely to experience greater losses during BR than those who are less fit

    Facies de abanico fluvial en los afloramientos orientales de Formación Peraltilla

    Get PDF
    La Formación Peraltilla está constituida por una sucesión estratigráfica heterolitica, del Oligoceno inferior. El análisis de facies indica una asociación de ambientes de abanicos fluviales húmedos, formados por canales múltiples de baja sinuosidad, y una tendencia vertical a la progradación de los sistemas fluviales

    Reversible DNA micro-patterning using the fluorous effect

    Get PDF
    We describe a new method for the immobilisation of DNA into defined patterns with sub-micron resolution, using the fluorous effect. The method is fully reversible via a simple solvent wash, allowing the patterning, regeneration and re-patterning of surfaces with no degradation in binding efficiency following multiple removal/attachment cycles of different DNA sequences

    Myocardial Infarct Size by CMR in Clinical Cardioprotection Studies Insights From Randomized Controlled Trials

    Get PDF
    OBJECTIVES: The aim of this study was to review randomized controlled trials (RCTs) using cardiac magnetic resonance (CMR) to assess myocardial infarct (MI) size in reperfused patients with ST-segment elevation myocardial infarction (STEMI). BACKGROUND: There is limited guidance on the use of CMR in clinical cardioprotection RCTs in patients with STEMI treated by primary percutaneous coronary intervention. METHODS: All RCTs in which CMR was used to quantify MI size in patients with STEMI treated with primary percutaneous coronary intervention were identified and reviewed. RESULTS: Sixty-two RCTs (10,570 patients, January 2006 to November 2016) were included. One-third did not report CMR vendor or scanner strength, the contrast agent and dose used, and the MI size quantification technique. Gadopentetate dimeglumine was most commonly used, followed by gadoterate meglumine and gadobutrol at 0.20 mmol/kg each, with late gadolinium enhancement acquired at 10 min; in most RCTs, MI size was quantified manually, followed by the 5 standard deviation threshold; dropout rates were 9% for acute CMR only and 16% for paired acute and follow-up scans. Weighted mean acute and chronic MI sizes (≤12 h, initial TIMI [Thrombolysis in Myocardial Infarction] flow grade 0 to 3) from the control arms were 21 ± 14% and 15 ± 11% of the left ventricle, respectively, and could be used for future sample-size calculations. Pre-selecting patients most likely to benefit from the cardioprotective therapy (≤6 h, initial TIMI flow grade 0 or 1) reduced sample size by one-third. Other suggested recommendations for standardizing CMR in future RCTs included gadobutrol at 0.15 mmol/kg with late gadolinium enhancement at 15 min, manual or 6-SD threshold for MI quantification, performing acute CMR at 3 to 5 days and follow-up CMR at 6 months, and adequate reporting of the acquisition and analysis of CMR. CONCLUSIONS: There is significant heterogeneity in RCT design using CMR in patients with STEMI. The authors provide recommendations for standardizing the assessment of MI size using CMR in future clinical cardioprotection RCTs

    The effects of exercise on caspase-independent mitochondrial proteins in regards to age-related apoptosis

    Get PDF
    Exercise may have protective factors in reducing oxidative stress, mitochondrial dysfunction and mitochondrial caspase-dependent apoptosis with aging. It is presently unclear whether the caspase-independent apoptosis via EndonucleaseG (EndoG) and Apoptosis Inducing Factor (AIF) translocation from the mitochondria to the nucleosome is effected by exercise in aging skeletal muscle. It is understood that in aging skeletal muscle EndoG and AIF do translocate from the mitochondria to the nucleosome. We hypothesize that exercise will attenuate the translocation of EndoG and AIF from the mitochondria to the nucleosome in aging white gastrocnemius muscle. Twenty-four Fischer Brown Norway rats were randomly assigned to four groups, young sedentary, old sedentary, young exercisers and old exercisers. The exercise consisted of treadmill training. The protein expression of EndoG and AIF were analyzed using western blot assays. In the old sedentary group, EndoG increased 86.4 % in the soluble fraction, but there was no change in the young groups. EndoG protein levels in the nucleosome fraction of young exercisers decreased 49 % when compared to young sedentary controls and old sedentary increased by 86.5 % when compared to young sedentary controls. With AIF changes in the soluble fraction were neglible. Protein levels of AIF in the nucleosome fraction increased 64 % in the old sedentary group compared to young sedentary controls. The data indicates that exercise was a protective factor against caspase-independent apoptosis by decreasing the translocation of EndoG and AIF to the nucleosome in aged skeletal muscle

    Isomorphism between Non-Riemannian gravity and Einstein-Proca-Weyl theories extended to a class of Scalar gravity theories

    Get PDF
    We extend the recently proved relation between certain models of Non-Riemannian gravitation and Einstein- Proca-Weyl theories to a class of Scalar gravity theories. This is used to present a Black-Hole Dilaton solution with non-Riemannian connection.Comment: 13 pages, tex file, accepted in Class. Quant. Gra

    Positive impact of low-dose, high-energy radiation on bone in partial- and/or full-weightbearing mice

    Get PDF
    Astronauts traveling beyond low Earth orbit will be exposed to galactic cosmic radiation (GCR); understanding how high energy ionizing radiation modifies the bone response to mechanical unloading is important to assuring crew health. To investigate this, we exposed 4-mo-old female Balb/cBYJ mice to an acute space-relevant dose of 0.5 Gy 56Fe or sham (n = ~8/group); 4 days later, half of the mice were also subjected to a ground-based analog for 1/6 g (partial weightbearing) (G/6) for 21 days. Microcomputed tomography (µ-CT) of the distal femur reveals that 56Fe exposure resulted in 65-78% greater volume and improved microarchitecture of cancellous bone after 21 d compared to sham controls. Radiation also leads to significant increases in three measures of energy absorption at the mid-shaft femur and an increase in stiffness of the L4 vertebra. No significant effects of radiation on bone formation indices are detected; however, G/6 leads to reduced % mineralizing surface on the inner mid-tibial bone surface. In separate groups allowed 21 days of weightbearing recovery from G/6 and/or 56Fe exposure, radiation-exposed mice still exhibit greater bone mass and improved microarchitecture vs. sham control. However, femoral bone energy absorption values are no longer higher in the 56Fe-exposed WB mice vs. sham controls. We provide evidence for persistent positive impacts of high-LET radiation exposure preceding a period of full or partial weightbearing on bone mass and microarchitecture in the distal femur and, for full weightbearing mice only and more transiently, cortical bone energy absorption values
    • …
    corecore