4,450 research outputs found

    Fabrication and properties of gallium phosphide variable colour displays

    Get PDF
    The unique properties of single-junction gallium phosphide devices incorporating both red and green radiative recombination centers were investigated in application to the fabrication of monolithic 5 x 7 displays capable of displaying symbolic and alphanumeric information in a multicolor format. A number of potentially suitable material preparation techniques were evaluated in terms of both material properties and device performance. Optimum results were obtained for double liquid-phase-epitaxial process in which an open-tube dipping technique was used for n-layer growth and a sealed tipping procedure for subsequent p-layer growth. It was demonstrated that to prepare devices exhibiting a satisfactory range of dominant wavelengths which can be perceived as distinct emission colors extending from the red through green region of the visible spectrum involves a compromise between the material properties necessary for efficient red emission and those considered optimum for efficient green emission

    Computational Fluid Dynamic Studies of Vortex Amplifier Design for the Nuclear Industry—I. Steady-State Conditions

    Get PDF
    In this study the effects of changes to the geometry of a vortex amplifier are investigated using computational fluid dynamics (CFD) techniques, in the context of glovebox operations for the nuclear industry. These investigations were required because of anomalous behavior identified when, for operational reasons, a long-established vortex amplifier design was reduced in scale. The aims were (i) to simulate both the anomalous back-flow into the glovebox through the vortex amplifier supply ports, and the precessing vortex core in the amplifier outlet, then (ii) to determine which of the various simulated geometries would best alleviate the supply port back-flow anomaly. Various changes to the geometry of the vortex amplifier were proposed; smoke and air tests were then used to identify a subset of these geometries for subsequent simulation using CFD techniques. Having verified the mesh resolution was sufficient to reproduce the required effects, the code was then validated by comparing the results of the steady-state simulations with the experimental data. The problem is challenging in terms of the range of geometrical and dynamic scales encountered, with consequent impact on mesh quality and turbulence modeling. The anomalous nonaxisymmetric reverse flow in the supply ports of the vortex amplifier has been captured and the mixing in both the chamber and the precessing vortex core has also been successfully reproduced. Finally, by simulating changes to the supply ports that could not be reproduced experimentally at an equivalent cost, the geometry most likely to alleviate the back-flow anomaly has been identified

    Genetic variation of Amaranthus retroflexus L. and Chenopodium album L. (Amaranthaceae) suggests multiple independent introductions into Iran

    Get PDF
    Amaranthus retroflexus L. and Chenopodium album L. (Amaranthaceae) are weedy plants that cause severe ecological and economic damage. In this study, we collected DNA from three different countries and assessed genetic diversity using inter-simple sequence repeat (ISSR) markers. Our analysis shows both weed species have low genetic diversity within a population and high genetic diversity among populations, as well as a low value of gene flow among the populations. UPGMA clustering and principal coordinate analysis indicate four distinct groups for A. retroflexus L. and C. album L. exist. We detected significant isolation-by-distance for A. retroflexus L. and no significant correlation for C. album L. These conclusions are based data from 13 ISSR primers where the average percentage of polymorphism produced was 98.46 % for A. retroflexus L. and 74.81% for C. album L.. These data suggest that each population was independently introduced to the location from which it was sampled and these noxious weeds come armed with considerable genetic variability giving them the opportunity to manifest myriad traits that could be used to avoid management practices. Our results, albeit not definitive about this issue, do not support the native status of C. album L. in Iran

    New proof-of-concept in viral inactivation: virucidal efficacy of 405 nm light against feline calicivirus as a model for norovirus decontamination

    Get PDF
    The requirement for novel decontamination technologies for use in hospitals is ever present. One such system uses 405 nm visible light to inactivate microorganisms via ROS-generated oxidative damage. Although effective for bacterial and fungal inactivation, little is known about the virucidal effects of 405 nm light. Norovirus (NoV) gastroenteritis outbreaks often occur in the clinical setting, and this study was designed to investigate potential inactivation effects of 405 nm light on the NoV surrogate, feline calicivirus (FCV). FCV was exposed to 405 nm light whilst suspended in minimal and organically-rich media to establish the virucidal efficacy and the effect biologically-relevant material may play in viral susceptibility. Antiviral activity was successfully demonstrated with a 4 Log10 (99.99%) reduction in infectivity when suspended in minimal media evident after a dose of 2.8 kJ cm−2. FCV exposed in artificial faeces, artificial saliva, blood plasma and other organically rich media exhibited an equivalent level of inactivation using between 50–85% less dose of the light, indicating enhanced inactivation when the virus is present in organically-rich biologically-relevant media. Further research in this area could aid in the development of 405 nm light technology for effective NoV decontamination within the hospital environment

    Perspectives of Nuclear Physics in Europe: NuPECC Long Range Plan 2010

    Get PDF
    The goal of this European Science Foundation Forward Look into the future of Nuclear Physics is to bring together the entire Nuclear Physics community in Europe to formulate a coherent plan of the best way to develop the field in the coming decade and beyond.<p></p> The primary aim of Nuclear Physics is to understand the origin, evolution, structure and phases of strongly interacting matter, which constitutes nearly 100% of the visible matter in the universe. This is an immensely important and challenging task that requires the concerted effort of scientists working in both theory and experiment, funding agencies, politicians and the public.<p></p> Nuclear Physics projects are often “big science”, which implies large investments and long lead times. They need careful forward planning and strong support from policy makers. This Forward Look provides an excellent tool to achieve this. It represents the outcome of detailed scrutiny by Europe’s leading experts and will help focus the views of the scientific community on the most promising directions in the field and create the basis for funding agencies to provide adequate support.<p></p> The current NuPECC Long Range Plan 2010 “Perspectives of Nuclear Physics in Europe” resulted from consultation with close to 6 000 scientists and engineers over a period of approximately one year. Its detailed recommendations are presented on the following pages. For the interested public, a short summary brochure has been produced to accompany the Forward Look.<p></p&gt

    Evaluation of techniques to break seed dormancy in Redroot pigweed (Amaranthus retroflexus)

    Get PDF
    If we understand factors that trigger seed dormancy release, then we can accurately predict whether the seed will remain dormant or germinate out of the seed bank. With regards to annual weed species, detailed understanding of what breaks seed dormancy is therefore critical for determining how many weed seeds will germinate into problematic weeds. To investigate the breaking of dormancy in weed seeds, we conducted an experiment with Redroot pigweed (Amaranthus retroflexus). Dormant seeds were treated with cold stratification (4 °C for 30 days), application of gibberellic acid (at 500, 1000, 1500, and 2000 parts per million) or ultrasound (for 10, 20, 30, and 40 minutes), soaking in hot water (90 °C for 3, 5, 7 and 10 minutes) or 98% sulfuric acid (for 1, 2 and 3 minutes) to determine which treatment most effectively broke dormancy. The results showed that Redroot pigweed seed dormancy was effectively broken by cold stratification, gibberellic acid, or ultrasound. Short treatments with hot water had minimal effect while longer times or treatment with sulfuric acid eliminated seed germination. In addition to germination percentage, germination rate, plumule length, radicle length, seedling length, seedling dry weight, and seed vigor index were also measured; similarly application of gibberellic acid had the most significant effect on these parameters. The results of this study add to our understanding of what processes effectively or ineffectively break Redroot pigweed seed dormancy and promote growth

    In Search of Robert Bruce, Part I: Craniofacial Analysis of the Skull excavated at Dunfermline in 1819

    Get PDF
    Robert Bruce, king of Scots, is a significant figure in Scottish history, and his facial appearance will have been key to his status, power and resilience as a leader. This paper is the first in a series that discusses the burial and skeletal remains excavated at Dunfermline in 1819. Parts II and III discuss the evidence relating to whether or not the burial vault and skeleton belong to Robert Bruce, and Part I analyses and interprets the historical records and skeletal structure in order to produce a depiction of the facial appearance of Robert Bruce

    Computational Fluid Dynamic Studies of Vortex Amplifier Design for the Nuclear Industry—II. Transient Conditions

    Get PDF
    In this paper computational fluid dynamics (CFD) techniques have been used to investigate the effect of changes to the geometry of a vortex amplifier (VXA) in the context of glovebox operations in the nuclear industry. These investigations were required because of anomalous behavior identified when, for operational reasons, a long-established VXA design was reduced in scale. The study simulates the transient aspects of two effects: back-flow into the glovebox through the VXA supply ports, and the precessing vortex core in the amplifier outlet. A temporal convergence error study indicates that there is little to be gained from reducing the time step duration below 0.1 ms. Based upon this criterion, the results of the simulation show that the percentage imbalance in the domain was well below the required figure of 1, and imbalances for momentum in all three axes were all below measurable values. Furthermore, there was no conclusive evidence of periodicity in the flow perturbations at the glovebox boundary, although good evidence of periodicity in the device itself and in the outlet pipe was seen. Under all conditions the modified geometry performed better than the control geometry with regard to aggregate reversed supply flow. The control geometry exhibited aggregate nonaxisymmetric supply port back-flow for almost all of the simulated period, unlike the alternative geometry for which the flow through the supply ports was positive, although still nonaxisymmetric, for most of the period. The simulations show how transient flow structures in the supply ports can cause flow to be reversed in individual ports, whereas aggregate flow through the device remains positive. Similar to the supply ports, flow through the outlet of the VXA under high swirl conditions is also nonaxisymmetric. A time-dependent reverse flow region was observed in both the outlet and the diffuser. It is possible that small vortices in the outlet, coupled with the larger vortex in the chamber, are responsible for the oscillations, which cause the shift in the axis of the precessing vortex core (and ultimately in the variations of mass flow in the individual supply ports). Field trials show that the modified geometry reduces the back-flow of oxygen into the glovebox by as much as 78. At purge rates of 0.65 m 3h the modified geometry was found to be less effective, the rate of leakage from the VXA increasing by 16-20. Despite this reduced performance, leakage from the modified geometry was still 63 less than the control geometry. © 2012 American Society of Mechanical Engineers
    corecore