549 research outputs found

    Effect of applied field and rate of voltage rise on surface breakdown of oil-immersed polymers

    Get PDF
    In sub-systems of high-voltage, pulsed-power machines, the introduction of a solid into bulk liquid insulation located between two conductors is often necessary to provide mechanical support. Breakdown events on or around the surface of the solid can result in permanent damage to the insulation system. Described in the present paper are experimental results pertaining to surface breakdown of five different solid dielectrics held between plane-parallel electrodes immersed in mineral oil. The effect of varying level of peak applied field from 200 kV/cm (dV/dt 70 kV/µs) to 1 MV/cm (dV/dt 350 kV/µs) is investigated, and the breakdown voltages and times to breakdown are compared to those for an open oil gap. The time to breakdown is shown to be reduced by the introduction of a solid spacer into the gap. Rexolite and Torlon samples suffered significant mechanical damage, and consistently showed lower breakdown voltage than the other materials - average streamer propagation velocity up to 125 km/s was implied by the short times to breakdown. Although ultra-high molecular weight polyethylene yielded the longest times to breakdown of the five types of liquid-solid gap, breakdown events could be initiated at lower levels of applied field for spacers of this material than those with permittivity closely matched to that of the surrounding mineral oil. Polypropylene and low-density polyethylene are concluded to provide the most stable performance in mineral oil. Due to the similarity of the applied voltage wave-shape (1/6.5 µs) to short-tail lightning impulses, the results may also be of interest to high-voltage system designers in the power industry

    Modifications to the von Laue statistical distribution of the times to breakdown at a polymer-oil interface

    Get PDF
    A statistical analysis has been undertaken to determine the statistical and formative times associated with breakdowns along a polymer-oil interface under impulse conditions. Early analysis was based on an assumption that the breakdown data followed the von Laue Distribution. However, it was found that in the Laue plots there were deviations from the expected straight line behavior at short times to breakdown, which may be due to a normal distribution in values of the formative times. In addition, the plots showed multiple straight line sections, which suggested that changes were occurring to the breakdown processes during the experimental run, or that more than one mechanism of breakdown was occurring. Values of the statistical time ts and the formative time tf were determined from the data by making choices on the straight line section to be considered, and ignoring the effects of the normal distribution on the derived values of ts and tf. The present paper is focused on further development of this statistical method, including a rigorous analysis of the experimental data, taking into account the effect that a normal distribution of the formative times has on the derived values of ts and tf. Optimal fits in terms of three parameters: ts, tf, and f (the standard deviation of the formative time) have been derived using Kolmogorov-Smirnov statistics to quantify the quality of fit. The quality of these fits and the applicability of this approach is discussed

    Photoproduction of eta-mesic 3He

    Full text link
    The photoproduction of eta-mesic 3He has been investigated using the TAPS calorimeter at the Mainz Microtron accelerator facility MAMI. The total inclusive cross section for the reaction gamma+3He->eta+X has been measured for photon energies from threshold to 820 MeV. The total and angular differential coherent eta cross sections have been extracted up to energies of 745 MeV. A resonance-like structure just above the eta production threshold with an isotropic angular distribution suggests the existence of a resonant quasi-bound state. This is supported by studies of a competing decay channel of such a quasi-bound eta-mesic nucleus into pi^0+p+X. A binding energy of (-4.4+-4.2) MeV and a width of (25.6+-6.1) MeV is deduced for the quasi-bound eta-mesic state in 3He.Comment: v1: 4 pages, 4 figures, submitted to PRL; v2: minor revisions and corrections, new figure added, 4 pages, 5 figs; v3: minor change

    Upgrade of the Glasgow photon tagging spectrometer for Mainz MAMI-C

    Full text link
    The Glasgow photon tagging spectrometer at Mainz has been upgraded so that it can be used with the 1500 MeV electron beam now available from the Mainz microtron MAMI-C. The changes made and the resulting properties of the spectrometer are discussed.Comment: 20 pages, 12 figure

    Pathotypic diversity of Hyaloperonospora brassicae collected from Brassica oleracea

    Get PDF
    Downy mildew caused by Hyaloperonospora brassicae is an economically destructive disease of brassica crops in many growing regions throughout the world. Specialised pathogenicity of downy mildews from different Brassica species and closely related ornamental or wild relatives has been described from host range studies. Pathotypic variation amongst Hyaloperonospora brassicae isolates from Brassica oleracea has also been described; however, a standard set of B. oleracea lines that could enable reproducible classification of H. brassicae pathotypes was poorly developed. For this purpose, we examined the use of eight genetically refined host lines derived from our previous collaborative work on downy mildew resistance as a differential set to characterise pathotypes in the European population of H. brassicae. Interaction phenotypes for each combination of isolate and host line were assessed following drop inoculation of cotyledons and a spectrum of seven phenotypes was observed based on the level of sporulation on cotyledons and visible host responses. Two host lines were resistant or moderately resistant to the entire collection of isolates, and another was universally susceptible. Five lines showed differential responses to the H. brassicae isolates. A minimum of six pathotypes and five major effect resistance genes are proposed to explain all of the observed interaction phenotypes. The B. oleracea lines from this study can be useful for monitoring pathotype frequencies in H. brassicae populations in the same or other vegetable growing regions, and to assess the potential durability of disease control from different combinations of the predicted downy mildew resistance genes

    T and F asymmetries in π0 photoproduction on the proton

    Get PDF
    The γp→π0p reaction was studied at laboratory photon energies from 425 to 1445 MeV with a transversely polarized target and a longitudinally polarized beam. The beam-target asymmetry F was measured for the first time and new high precision data for the target asymmetry T were obtained. The experiment was performed at the photon tagging facility of the Mainz Microtron (MAMI) using the Crystal Ball and TAPS photon spectrometers. The polarized cross sections were expanded in terms of associated Legendre functions and compared to recent predictions from several partial-wave analyses. The impact of the new data on our understanding of the underlying partial-wave amplitudes and baryon resonance contributions is discussed

    Measurement of the transverse target and beam-target asymmetries in η\eta meson photoproduction at MAMI

    Get PDF
    We present new data for the transverse target asymmetry T and the very first data for the beam-target asymmetry F in the γpηp\vec \gamma \vec p\to\eta p reaction up to a center-of-mass energy of W=1.9 GeV. The data were obtained with the Crystal-Ball/TAPS detector setup at the Glasgow tagged photon facility of the Mainz Microtron MAMI. All existing model predictions fail to reproduce the new data indicating a significant impact on our understanding of the underlying dynamics of η\eta meson photoproduction. The peculiar nodal structure observed in existing T data close to threshold is not confirmed.Comment: 5 pages, 3 figures, accepted for publication in PR
    corecore