
Aberystwyth University

Capturing Collaborative Designs to Assist the Pedagogical Process
Thomasson, Benjamin Jason Tom; Ellis, Wayne; Thomas, Lynda; Ratcliffe, Mark	Bartley

Publication date:
2003

Citation for published version (APA):
Thomasson, B. J. T., Ellis, W., Thomas, L., & Ratcliffe, M. (2003). Capturing Collaborative Designs to Assist the
Pedagogical Process.

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 18. Apr. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/288842949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Capturing Collaborative Designs to Assist the
Pedagogical Process

Mark Ratcliffe, Lynda Thomas, Wayne Ellis, Benjy Thomasson
Department of Computer Science

University of Wales, Aberystwyth, UK
{mbr, ltt, wwe8, bjt98}@aber.ac.uk

ABSTRACT
This paper describes a project being undertaken at the
University of Wales, Aberystwyth that captures students’
designs in an attempt to improve the pedagogy. To enhance
their understanding of object oriented programming, students
are given an environment that enables distance working and
encourages group collaboration whilst capturing all aspects of
development of their designs. To enhance the teaching of
programming and software design, instructors are given access
to complete design histories enabling them to better
understand how the students view their design processes, the
problems that arise and the steps that they take to resolve
them.

Categories and Subject Descriptors
D.1.5 Object-oriented Programming.

General Terms
Design, Experimentation, Human Factors.

Keywords
Pedagogy, design capture, learning to program.

1. OVERVIEW
Many academics and industrialists are beginning to realize
that the way we are educating software engineers is flawed.
Ratcliffe coordinated a session on this in the USA early in
2002 [1]. A straw-poll survey suggested that in both the UK
and the USA about 30% of students studying Computer
Science are failing to grasp the basics.

At first, there seems to be little alternative to providing one-to-
one tuition that points out where a student is going wrong at
the critical time. Indeed determining the critical time is itself
of course a tricky pedagogical issue. Unfortunately this level
of tuition is just not practical in today’s academic environment
of growing student numbers and limited resources.

The Department of Computer Science at the University of
Wales, Aberystwyth is developing a tool where we aim to
provide the equivalent of this one-to-one tuition in the form of
a software system. The system gives personalized advice
while providing savings in terms of time and money. It also
allows, and in fact encourages students to work in a
collaborative way.

This system, referred to as VorteX (Visually Oriented
Training Experience), is a fully interactive, collaborative
design capture and feedback system. It captures the design
process of cooperating novice designers in order to refine our
knowledge of the way in which the design learning process
works. In this way we are able to provide automated support
that is both more focused and relevant.

The knowledge gained from having students work through a
specified set of case studies is currently being used to populate
a case-based system capable of assisting novice software
engineers to develop higher quality designs. It is enabling us
to acquire a much better understanding of the student’s
perception of design and the learning process that it involves.

As the system captures collaborative software designs,
ultimately it should be able to simulate other group players
and thus give individuals experience of designing within a
team, even if one is not present.

The long-term aim is to develop a more generalized system
that has an underlying model of the design learning process.
At that point it is hoped that it can break free of the captured
cases and be capable of advising students in the general
development of their designs.

2. THE PROBLEM
Current teaching is less effective than it should be
Software development is a relatively young engineering
discipline, yet there have already been many fundamental
changes in the techniques employed for the basic development
of software systems. Object Oriented Design is the latest
paradigm and is now commonplace in most courses on
software development. This technique is claimed to be one of
the most natural forms of development, modeling closely the
way in which systems exist in the real world, yet there are
major problems in teaching the technique. At a recent
conference of the Learning and Teaching Support Network for
Information and Computer Sciences [2], there was wide
consensus that the success rate of teaching Computer Science
freshmen is very poor. An international review of first year
students’ programming skills reached a similar conclusion [3],
that about 30% of students are failing to grasp the basics of
design. An informal birds-of-a-feather group at the 2002

SIGCSE conference [1] raised the point that perhaps we are
failing to get across the principles of Object Oriented
Programming.

Many different approaches have been used to assist novice
programmers in their attempts to learn the Object Oriented
Design process but as demonstrated in a recent paper [4], if we
examine typical advice that is given to designers and
programmers by textbooks and references, we see many
appeals to experience.

“The first step in actual class design is to find the primary
objects” [5]
“Identify the classes and objects at a given level of
abstraction”[6]
“The content of an object model is a matter of judgment …”
[7]
“As analysts experienced in [design…], we recognize certain
patterns” [8]
and the list goes on. This is a chicken and egg problem. How
are students supposed to apply judgment in the absence of
such experience?

Tutors’ experience is a barrier to student learning
Whilst novice programmers are often able to recite the
techniques necessary to approach the design process, when
things get a little hard they will usually turn to more
experienced tutors to decrypt what is required. Most tutors
have years of valuable experience building their understanding
of the design process and naturally base their tuition
techniques upon it. Unfortunately, although the tutors’
experience is the key to their own success, it is also a
complicating factor. The lack of experience on the students’
part can put up a significant barrier between the tutor and
student. It could be the very reason why the tutor cannot
appreciate the real difficulty that the students face.

The authors are not trying to claim that we need to replace the
tutors – far from it; in many cases they are the right people to
convey this knowledge. What we are saying is that additional
assistance can be provided to help the students and we hope to
prove that this assistance can emanate from the student body
itself.

3. IDENTIFYING THE DIFFICULTIES
As a first step in identifying the real problems that students
face in producing their solutions, we thought it useful to try to
capture their decisions. The idea behind VorteX is to monitor
the students as they design a small number of software
systems. Each step of the way, as the users add and remove
classes, add and remove methods, merge classes, change the
signatures of methods, and so on, VorteX captures the
modification and attempts to obtain as much explanation as is
possible.

4. CAPTURING THE DESIGN
Capturing the design process is fairly straightforward. Exactly
what is done with the information is much more challenging
and is explained later in this paper.

The first stage involves presenting students with example
specifications. There are five such specifications used in the

first year software development class. The following is one
such abbreviated example:

“The government of Elwha, a small island in the Pacific has
commissioned you to build a software system to manage both
their air traffic and baggage control systems.
The airport consists of two separate terminals separated by a
distance of about 3 miles. The first terminal has two runways.
The second terminal has three.
….
You are required to produce class diagrams that will support
the following operations:
Assign an incoming flight to a particular runway
……”

This is the kind of specification that might be given to students
in their first few weeks of software design. It takes a much-
simplified example of the real world and is not looking for any
major inspiration on the student’s part. Its purpose is to
provoke a simple breakdown of classes that might be provided
together with identification of methods within those classes.

One might argue that no novice student is going to be willing
to put up with a system that requires an explanation for every
move that is made. Fortunately because these explanations
feed directly into the development by generating associated in-
line documentation, most students are content to provide this
information. After all, providing documentation is an
unpopular requirement for most novice programmers;
anything to assist is held in high regard.

Capturing student input is not a new idea. Similar work is
underway in the UK through the AESOP [9] project though
this is largely concerned with recording lower level
information such as keystrokes; it is not applying case-based
or model-based technology to solve students’ problems. As far
as we can ascertain, there is little work being carried out in
capturing collaborative work.

To ensure that the student is aware of all that is being
captured, the information is shown in the log window as is
depicted in the lower section of Figure 1. Even without any
further case-based analysis, this capture is itself a useful
design aid. Both students and their tutors are able to scroll
through the log information to see the justification for
previous changes and to identify the source of any
misconceptions.

Despite the fact that justification is required for all changes
made in the editor, the problem remains that we might still not
be capturing all that is going on in the mind of the student
carrying out the design. It may be that various alternatives are
considered and that only when a student is satisfied will he/she
commit to a possible design. What we really need is an extra
level of indirection, another kind of sounding board which can
itself be captured.

5. ENHANCING CAPTURE THROUGH
GROUP WORK
Cooperative Design is a good thing.
If we can encourage students to cooperate we might get more
information out of them. Work undertaken at the German

VorteX
provides
full
collaborativ
e working.

Figure 1: VorteX adding an attribute

National Research Center for IT demonstrates the benefits of
cooperative learning in design [10], in particular it has the
added advantage of causing students to justify their design
decisions and reflect upon them. Research has shown that
knowledge alone is not sufficient for successful problem
solving in a domain; the student must also choose to use that
knowledge, and to monitor the progress being made [11]. The
learning and construction of new knowledge structures
requires similar self-awareness and reflection.

VorteX supports cooperative design and as in single user mode
captures the entire communication process. The first group
member to start up VorteX is essentially the administrator and
he/she is able to register any other users who may wish to
contribute to the project. Any of these other users can be
allocated administrator privileges should the originator move
away from the team or be unavailable. To support
communication, free text is captured in the form of a chat tool,
but by its very nature is difficult to parse. To ensure that the
basic design capture is retained, group user mode still requires
all changes to the design to be justified through the pop up
windows. Figure 1 again shows this in its centre.

The facility to produce designs cooperatively both simulates
“real-world” team design contexts and also brings some of the
flavor of pair programming [12] to a VorteX session. Students
have responded well to pair programming at Aberystwyth [13]

and although the VorteX experience allows parallel working1,
it does provide the opportunity for sharing ideas, a quality
which students cite as a real advantage in pair programming.

6. WHAT VORTEX CAPTURES
VorteX uses an XML definition to record a complete path of
progression through the group’s design. As the design
changes, VorteX records every action and logs the results as a
design capture log. From a pedagogical point of view, a design
capture log allows us to see how the design evolves, where
and when changes occurred, why they happened and who
carried out the modifications. The actual log displayed to the
user is parsed into a much more user-friendly version, in a
form designed to be suitable for novice programmers.

7. HOW VORTEX IS BEING USED
VorteX makes the entire history of the development available
to the tutor showing how the design evolved from its initial
conception. Current developments are planning to extend
VorteX to provide an animation of the development using the
design capture log. Using this facility it will be possible to
step through a development examining what happened at each
stage. One can see that this could have advantages both to the
students themselves (particularly within a group environment)
and to the tutor wishing to give feedback to a student.

1 Rather than pair programming in which students work on one

machine.

Rationale
requested
for each
modificatio
n.

Chat tool
supports
conversatio
n between
users.

Log
displays
abbreviated
design
capture.

Design capture i
represented in
XML and stores
modifications to
design, rationale
for changes
obtained via
popup windows,
and
conversations
from chat tool.

s

Equivalence maps
are manually
derived from
captured designs
and are used to
collate equivalent
designs into a
single unit.

They form the
basis of underlying
case base.

Of particular pedagogical interest are any planes of
unconformity that exist in the development. These represent
radical design changes rather than gradual evolution and
usually indicate a complete change of design. Although
unfortunate, it is often the case that less experienced
advisors/tutors will suggest a whole new approach to a
confused student rather than attempting to explain what is
wrong with their current design. This approach can often leave
students wondering what was wrong with their approach.

When it comes to evaluating the student work, a project
developed through VorteX provides much more information to
the tutor than is typically available. VorteX is server based,
and maintains a centrally stored model of all the projects; in
this way an instructor is able to get detailed information on an
individual’s progress. By selecting a particular project, the
instructor is able to access the design in its current state. The
development log shows the design history and any chat tool
dialog that might be available shows the conversation that
took place prompting the developments. Extensions to the
VorteX application provide simple log assimilation facilities
presenting the tutor with graphical representations of the work
effort applied by each group member. Statistics are provided
for individuals and complete groups. This helps to
complement existing methods of project assessment through
identification of the work carried out by each pupil. Through
automated analysis, we can see which students performed
more important actions such as the identification and addition
of classes and attributes, in comparison to the group members
that implemented the bodies of the classes. With this level of
analysis we can aim to identify the abilities of individual
group members and possibly even the role they lead in their
team.

8. PRELIMINARY RESULTS
The project is still only in its infancy and full deployment of
the tool is still a couple of months away, yet already we have
some interesting results. The first specification deployed on a
class of 115 students resulted in only 20% of students
producing a design anything like that expected by the lecturer.
Providing information such as this can really help a lecturer
assess the progress of a class. Over the next few months as the
captured designs are analyzed we expect to get more
information that will challenge our perceptions of how
successful courses really are. It is already clear that to be most
effective, VorteX needs to be deployed to other institutions
that use different methods and styles of teaching. It appears
that as a course progresses, the designs produced by students
get closer and closer to those of the lecturer teaching the
course. Whether this means that the students are producing
better designs or simply that they develop an understanding of
what the lecturer wants is still up for investigation.

9. USING THE CASE HISTORIES
VorteX has so far been deployed in capture mode only – in
order to populate the case-base. The five project specifications
have been carefully developed and released one at a time to
over 100 freshmen on the introductory programming course.
These case studies have been chosen to encourage team
working so as to enhance communication and make it easier to
capture the feedback loop fundamental to the learning process.

Even though the case-base functionality is not yet available
students have been able to benefit from VorteX, working with
others and enhancing their design skills. The ability to trace
back through designs is of real pedagogical value.

At the same time as deploying the specifications, we have
developed equivalence maps for each project specification.
These are fundamental to the case-based analysis and were
initially produced by the tutor to represent possible solutions
to the specification. These solution maps are expressed in
XML and define the classes, their attributes and their methods.
Against each identifier is given a list of possible alternatives –
a kind of lookup or thesaurus facility. Figure 2 shows the
XML definition for an extract of the Airport example. The
classes might include Terminal (Building), Airline (Carrier,
Company), Flight, and Runway (Landing) with alternative
synonyms shown in brackets. In a similar way, possible
alternatives to attribute types and method names are also
identified by the tutor.

<Airport>
 <class name="Flight">
 <equivalent>Plane</equivalent>
 <equivalent>Aeroplane</equivalent>
 <equivalent>Plain</equivalent>
 <attribute name="pilot" type="Pilot">
 <equivalent>Captain</equivalent>
 <equivalent>Flyer</equivalent>
 </attribute>
 <attribute name="passengers" type="Passenger[]">
 <equivalent>Seat[]</equivalent>
 <equivalent>Vector</equivalent>
 <equivalent>ArrayList</equivalent>
 </attribute>
 <method name="setPilot">
 <attribute name="pilot">
 </method>
 <method name="getPilot">
 <return-type name="pilot">
 </method>
 <method name="setPassengers">
 <attribute name="passengers">
 </method>
 </method>
 </class>
</Airport>

Figure 2: Much abbreviated equivalence MAP

As students submit project work the final designs are analyzed
and used to refine the equivalence maps (largely by adding
synonyms). In certain cases, sets of completely different, yet
successful designs are submitted and in these cases, new
equivalence maps are developed.

Using the current version of VorteX, students are given their
specification and are presented with an empty screen on which
to start their design. At various stages of development they can
ask the system for assistance. The idea of an assistant provides
a means to aid a lost student. By providing the student with a
suggestive aid we aim to inspire and guide them rather than
channel students’ designs in a similar direction, removing their
unique perspective. Exactly what is presented is dependent on
what the instructor wishes to make available. If there are no
restrictions, students might select the highest-level view that
shows the classes that have been used or they might zoom-in

to see the individual methods defined within the classes. The
instructor is able to alter what is available through the lifetime
of a project. It might not be desirable to give out the full
solution at the start of the development; it might start with just
the basic class outline followed some days later by a more
detailed breakdown.

If the student has already produced an initial design, they can
at any stage ask the system to rate their work. By comparing
the current design with those within the case base, VorteX will
give information on the closest match. It will respond with
information such as “Your design currently has a close match
(85%) with the design chosen by 63% of students”.

10. CONCLUSION
We hope that the initial case-based system for software
designers will prove a real asset in teaching software
development by improving the quality of the educational
experience. Most Computer Science Departments are only too
aware of the low success in helping novice programmers
develop their programming and design skills. This system will
assist in speeding up the learning process for the learner by
helping them gain knowledge that is usually only developed
through extensive experience.

Once the case-based system has been finalized, VorteX will
move into the final most adventurous phase, which is to take
the design cases and factor out a more generalized model of
the software design learning process thereby breaking out of
the confines of the original case studies. We expect to be able
to abstract a set of general causal mechanisms appropriate to
novice programmers from the case studies and from the
experience with the case-based system. We will then apply
these to new case studies to generate for unseen problems the
kind of support that the case-based system provides for the
original case study problems. Stroulia does similar abstraction
and reuse of design principles, albeit in a simpler domain [14].

This final stage of the project aims to develop and refine a
generalized model of the learning process facing novice
designers and identify effective techniques that can be used to
help overcome them.

11. REFERENCES
[1] Ratcliffe, M.B. Improving the Teaching of Introductory

Programming by Assisting the Strugglers. The 33rd ACM
Technical Symposium on Computer Science Education,
Cincinnati, USA, March, 2002.

[2] Ratcliffe, M.B., Woodbury, J and Thomas, L.A. A
Pedagogically Driven, Directed Learning Environment,
2nd Annual LTSN-ICS Conference, University of
London, August 2001.

[3] McCracken, M., et al., “A multi-national, multi-
institutional study of assessment of programming skills of
first-year CS students”, report of an ITiCSE 2001
Workshop, SIGCSE Bulletin, December 2001.

[4] Maris, J.M., and VanLangen, C. A Design Tool for
Novice Programmers, Working Paper Series 00-01-April
2000, http://www.cba.nau.edu/working_papers/papers
&abstracts/ MarisVanLanLucy/Novice.htm

[5] Arnow, D., and Weiss, G. Introduction to Programming
Using Java: An Object Oriented Approach, Addison
Wesley, Menlo Park, California, 2000, p. 142.

[6] Booch, G., Object Oriented Design with Applications,
Benjamin/Cummings, Colorado, 1991, p. 190.

[7] Rumbough, J., et al., Object Oriented Modelling and
Design, Prentice Hall, Englewood Cliffs, New Jersey,
1991, p. 47.

[8] Coad, P., and Yourdon, E., Object Oriented Analysis, 2nd
edition, Yourdon Press, Englewood Cliffs, New Jersey,
1991, p. 48.

[9] MacGregor, M., Thomas, P., and Woodman, M. AESOP
(An Electronic Student Observatory Project), ITiCSE
2001, Innovation & Technology in Computer Science
Education, Canterbury, Kent.

[10] Holmer, T. and Schummer, I., A Tool for Co-operative
Program Exploration, ECOOP 2000 Workshop, Tools
and Environments for Understanding Object-Oriented
Concepts, June 12, 2000

[11] Silver, E.A., Foundations of cognitive theory and
research for mathematics problem solving instruction in
A. H. Schoenfeld (Ed.), Cognitive Science and
Mathematics Education, Hillsdale, NJ: Lawrence
Erlbaum, 1987, pp. 33-61.

[12] Beck, K., Extreme Programming Explained: Embrace
Change, Addison-Wesley, USA, 2000.

[13] Thomas, L.A., Ratcliffe, M.B., and Robertson, I.A., Code
Warriors and Code-a-phobes: A Study in Attitude and
Pair Programming, Submitted to SIGCSE 2003.

[14] Goel, A. and Stroulia, E., Functional Device Models and
Model-Based Diagnosis in Adaptive Design, Artificial
Intelligence for Engineering Design, Analysis and
Manufacturing, vol 10, 1996, pp. 355-370.

	ABSTRACT

